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Summary
Neuroimaging studies have identi®ed at least two bilat-
eral areas of the visual extrastriate cortex that respond
more to pictures of faces than objects in normal human
subjects in the middle fusiform gyrus [the `fusiform
face area' (FFA)] and, more posteriorly, in the inferior
occipital cortex [`occipital face area' (OFA)], with a
right hemisphere dominance. However, it is not yet
clear how these regions interact which each other and
whether they are all necessary for normal face percep-
tion. It has been proposed that the right hemisphere
FFA acts as an isolated (`modular') processing system
for faces or that this region receives its face-sensitive
inputs from the OFA in a feedforward hierarchical
model of face processing. To test these proposals, we
report a detailed neuropsychological investigation com-
bined with a neuroimaging study of a patient presenting
a de®cit restricted to face perception, consecutive to

bilateral occipito-temporal lesions. Due to the asymme-
try of the lesions, the left middle fusiform gyrus and the
right inferior occipital cortex were damaged but the
right middle fusiform gyrus was structurally intact.
Using functional MRI, we disclosed a normal activation
of the right FFA in response to faces in the patient
despite the absence of any feedforward inputs from the
right OFA, located in a damaged area of cortex.
Together, these ®ndings show that the integrity of the
right OFA is necessary for normal face perception and
suggest that the face-sensitive responses observed at this
level in normal subjects may arise from feedback con-
nections from the right FFA. In agreement with the
current literature on the anatomical basis of prosopag-
nosia, it is suggested that the FFA and OFA in the right
hemisphere and their re-entrant integration are neces-
sary for normal face processing.
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Introduction
Understanding how the human brain perceives and recog-

nizes faces is one of the most exciting and debated areas of

research in cognitive neuroscience (e.g. Haxby et al., 2000;

Tarr and Gauthier, 2000). Pursuing this general goal,

neuroimaging studies (mostly PET and functional MRI)

have identi®ed a number of relatively small functional areas

lying outside the retinotopic cortex that respond more to

pictures of faces than other objects in the normal human

brain. The most robust difference in activity between faces

and objects has been described in the lateral middle fusiform

gyrus, bilaterally, but often stronger in the right hemisphere

(e.g. Halgren et al., 1999; Haxby et al., 1999; Kanwisher

et al., 1997; McCarthy et al., 1997; Rossion et al., 2000). This

is the region that has been named the `fusiform face area'

(FFA) and de®ned as a module for face perception

(Kanwisher et al., 1997). Posterior to the FFA, a region of

the inferior occipital gyrus (termed OFA for occipital face

area, Gauthier et al., 2000) also responds more to faces than
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objects, with a larger differential response in the right

hemisphere as well (Sergent et al., 1992; Halgren et al., 1999;

Haxby et al., 1999; Gauthier et al., 2000; Rossion et al.,

2000). A smaller number of studies have also disclosed larger

activation for faces than objects in the posterior part of the

superior temporal sulcus, but these observations are much

less consistent (e.g. Puce et al., 1998; Haxby et al., 1999).

Although their relative functions in face processing remain

unclear, these regions are considered to form a common

neural network for face perception, providing outputs to

further areas and processes related for instance to facial

expression processing, or retrieval of semantic knowledge

about persons (see Haxby et al., 2000).

Besides the precise function of these regions, there are

several important questions regarding the neuro-functional

basis of face processing which cannot be addressed by

neuroimaging alone. First, neuroimaging cannot indicate

whether these functional brain regions are necessary for the

successful perception and recognition of faces. It may well be

that some of these regions are activated in response to the

presentation of faces in normal humans and yet do not play a

crucial role in any important aspects of face recognition. As a

matter of fact, selective lesions of the regions where the

largest proportion of face-selective cells (~20%, see Gross,

1992) are usually found in the monkey brain (namely in the

superior temporal sulcus) do not appear to prevent monkeys

from recognizing faces (Heywood and Cowey, 1992). A

second, related, question that is dif®cult to resolve by

neuroimaging experiments alone is the nature of the inter-

actions between the different functional brain areas involved

in face processing. For instance, in a recent neuro-functional

model of face processing, Haxby and colleagues (see also

Halgren et al., 1999) proposed that the most anterior face-

sensitive regions of the visual cortex, such as the FFA, receive

their input from the OFA, which would be involved in a basic

analysis of facial features (Haxby et al., 2000). However, this

hypothesis has not yet been veri®ed by neuroimaging studies

of normal subjects.

Neuroimaging studies of brain-damaged patients may help

resolve these questions (Price and Friston, 2001). One of the

most spectacular de®cits observed following brain damage is

prosopagnosia, a de®cit classically de®ned as the inability to

recognize faces of conspeci®cs, despite normal intellectual

abilities and apparently normal recognition of other object

categories. Although a few cases had been reported at the end

of the 19th century, the term `prosopagnosia' was coined by

Bodamer in 1947 (Bodamer, 1947). Since then, despite its

rarity, a certain number of cases with a major de®cit of face

recognition have been described (see Farah, 1990; for more

recent cases, e.g. Sergent and Signoret, 1992; Clarke et al.,

1997; Gauthier et al., 1999; Laeng and Caviness, 2001).

Prosopagnosic patients are usually able to distinguish

between a face and another object category (`face detection'),

but are unable to identify familiar facesÐincluding famous

faces, friends and relatives or even their own faceÐand are

also unable to learn new faces (Damasio, 1985). Different

types of prosopagnosia have been described in the literature

(e.g. Damasio et al., 1990), but it is generally acknowledged

that every patient is unique and most studies focus on the

detailed analysis of single cases in order to clarify current

theoretical debates regarding normal face processing (see

Farah, 1990).

The lesions that cause prosopagnosia are usually found in

ventral occipito-temporal cortex, involving the lingual and

fusiform gyri, and are bilateral in most of the cases (Damasio

et al., 1982; Sergent and Signoret, 1992) although right

unilateral lesions can be the cause of the syndrome (e.g.

Landis et al., 1988; Wada and Yamamoto, 2001; Uttner et al.,

2002). However, establishing relationships between struc-

tures and function based on clinical studies alone has always

been problematic; the lesions of prosopagnosic patients are

not always clearly identi®able, can be highly variable from

case to case, and are usually very large and not limited to the

structures subtending face processing. Relative to the study of

patients with naturally occurring brain lesions, neuroimaging

thus affords far greater anatomical precision and avoids the

confounding factors associated with patient studies, such as

any compensatory functional reorganization of the brain

(Sergent et al., 1992).

In the present paper, we combine a detailed neuropsycho-

logical testing with a neuroimaging investigation of a

prosopagnosic patient (P.S.) in order to: (i) test whether a

structurally and functionally normal FFA is suf®cient for

normal face processing or if other high-level visual areas

besides the right FFA are necessary for normal face

perception; and (ii) test the hypothesis that the FFA activation

is dependent on face-sensitive feedforward inputs from the

OFA.

Methods
Subjects
Patient P.S.
P.S. is a 52-year-old woman (born in 1950; right-handed) who

sustained a closed head injury (hit at the back of the head by a

bus) in 1992. CT scans ®rst indicated contusions in the

occipital and parieto-occipital regions, and the left cerebel-

lum. A recent MRI scan revealed lesions to the lateral part of

the occipital and temporal lobes, bilaterally, as well as in the

anterior part of the left cerebellum. The right hemisphere

lesion extends from the posterior part of the inferior occipital

gyrus to the posterior fusiform gyrus. The left hemisphere

region is more anterior and covers a large part of the fusiform

gyrus, extending into the lower part of the temporal lobe

(Fig. 1).

Following months of neuropsychological rehabilitation

and spontaneous recovery, P.S. was normal at all the non-

visual functions that were slightly impaired following the

injury (motor aspects of language, calculation, imagery and

memory), yet she was slow at all visual tasks requiring a ®ne-

grained discrimination (September 1993: overlapping ®gures,
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dots counting tasks), presented a de®cit in contrast sensitivity

and a massive prosopagnosia. Helped by a neuropsycho-

logical rehabilitation programme, P.S. returned to her work as

a kindergarten teacher, and she has to be trained regularly at a

neuropsychological rehabilitation centre to use external cues

to distinguish among children of her new class (see Mayer

et al., 1999). P.S. complains of a profound dif®culty in

recognizing faces, including those of her own family, and her

own face. To determine a person's identity, P.S. is reliant on

cues such as haircut, hat, moustache or earrings, but also on

the person's voice, his/her posture and clothes. We presented

P.S. with 60 faces of famous people, whose faces were well-

known by her before her accident (selected on the basis of a

questionnaire that she had to ®ll up months before testing),

and 60 unfamiliar faces. Each face was presented for 3000 ms

and P.S. had 5000 ms to press one of two keys according to

the familiarity/unfamiliarity of the face. Whereas she cor-

rectly classi®ed all the unfamiliar faces, P.S. pressed the key

`familiar' for 14 out of the 60 famous faces only. After the

experiment, she was shown the famous faces she classi®ed

correctly (14) and asked to name them or give some

information about them; she was correct only for four

faces. P.S. does not complain of any dif®culty at object

recognition, but she reads more slowly than she used to.

The performance of P.S. on standard clinical tests of visual

perception and recognition is given in Table 1. P.S.'s visual

acuity is good, but not perfect and she is slightly slower than

normal controls at detecting letters and numbers in her right

visual ®eld. She is also slower than normal controls at a

simple reaction time task, detecting a cross in the centre of the

screen, as typically observed in brain damaged patients (e.g.

Benton, 1986). Her contrast sensitivity is in the normal range

except at higher frequencies (>22 c/degree). She is perfect at

all tests of low level visual processing as tested by the

Birmingham Object Recognition Battery (BORB) (Riddoch

and Humphreys, 1993; tests 1 to 6), including matching

objects under different viewpoints (tests 7 and 8), and she has

no dif®culty in perceiving and identifying objects, including

semantic associations and naming (Table 1 Object recogni-

tion). She was also tested in an object decision task on a

computer (line drawing objects taken from Snodgrass and

Vanderwart, 1980; non-objects taken from Kroll and Potter,

1984), which she performed perfectly. Her short-term and

long-term visual memory are in the normal range (Table 1), as

well as reading (slower than normal controls but perfectly

accurate) and visual imagery (BORB, test 9). She was

presented with the full set of colorized Snodgrass and

Vanderwart's objects (Rossion and Pourtois, 2001) to name,

each object being presented for 3000 ms or until response on a

computer screen. She was perfect at this task, always giving

the most common object label or a close label also given by

normal young subjects (see Rossion and Pourtois, 2001)

without any hesitation.

These observations contrast with her face perception and

recognition performance. She achieved a score of 27 out of 54

in the Benton face perception test, which rank her as highly

impaired (<39). Her score at the Warrington face recognition

test was 18 out of 25, being also signi®cantly less accurate

than controls.

Normal controls
In addition to P.S., six age- and sex-matched normal subjects

performed all the behavioural tasks described in the sections

below. Eleven normal controls (®ve females, mean age

29.8 years, all right-handed) were used in the neuroimaging

study. Young normal controls of both genders were used in

the neuroimaging study mainly for practical reasons, but there

is no evidence of gender differences in face-sensitive

responses, which also appear to remain stable until the

ninth decade of age (Brodtmann et al., 2002). Both P.S. and

the normal controls in the neuroimaging study gave informed

consent to the experiments, which were approved by the

Ethics Committee of the University of Geneva (Hopital

Universitaire).

Materials and procedure
Behavioural tests
Computer tests of face processing. P.S.'s face processing

abilities were tested extensively using a variety of computer

tasks with well-face stimuli (see Fig. 2). Sex decision on faces

was tested with 50 face stimuli (25 males) presented on the

Fig. 1 P.S.'s lesions are bilateral but asymmetrical, covering the
occipital inferior gyrus and posterior fusiform gyrus in the right
hemisphere and the middle and anterior fusiform gyrus in the left
hemisphere. As shown on the three slices, the most robust faces±
objects activation (in red) is at the level of the right middle
fusiform gyrus, anterior to the lesion. The homologous region in
the left hemisphere has been damaged by the lesion, as illustrated
on the transverse and coronal slices. The reverse comparison
(objects±faces) led to a large signi®cant difference in the
parahippocampal gyrus (in blue, transversal slice), as shown
previously (e.g. Epstein and Kanwisher, 1998).
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centre of the screen for 10 s maximum (next trial as soon as

key press). P.S. and control subjects had to indicate the sex of

the person by pressing one of two keys as accurately and as

quickly as possible. Facial expression analysis was tested in

two blocks. In the ®rst block, three kinds of facial expression

were presented: joy; fear; and anger (each face for 10 s

maximum; next trial on key press), and subjects had to press

one of three keys according to the kind of expression

presented (second block: choice among disgust; sadness; and

surprise). Age judgement was also a three-forced choice task:

subjects were presented with 40 successive faces (10 s

maximum) of different age and had to categorize them in

three age classes: child (10 trials); adult (17 trials); and old

person (13). Face matching, as indicated in Table 2, was

tested using a same/different task with two faces presented

simultaneously (a full front face and a three-quarters face) for

10 s maximum (two blocks of 35 trials).

Discrimination of non-face objects from visually homo-

genous categories. P.S. was presented with a matching task

with a set of homogeneous objects: cars (Fig. 2). Seventy-two

pairs of three-quarter pro®le cars were presented successively

in the centre of the screen for 7000 ms each maximum or until

the subject's response (a blank screen of 1000 ms separated

two trials). Subjects simply had to press a key if the two cars

were the same (half of the trials) as accurately and quickly as

possible. P.S. was also tested with a matching task using

different sets of multi-parts novel objects (Fig. 2). In the ®rst

twoblocks, objects were presented simultaneously in the same

viewpoint. For each block, there were 60 trials (7000 ms

maximum, 1000 ms inter-stimulus interval).

Analysis. The Z-score is the ratio of the difference between

P.S.'s score and the normal controls average score by the SD

of the normals. A Z-score >2 means that P.S.'s performance is

above or below 2SDs of the normals. A¢ is a nonparametric

measure of sensitivity used in previous investigations of

prosopagnosic patients (Gauthier et al., 1999). Chance

performance yields a score of 0.5 and positive values indicate

better than chance sensitivity.

MRI acquisition
Stimuli. Twenty full front photographs of unknown faces

(http://faces.kyb.tuebingen.mpg.de/) and 20 pictures of com-

Table 1 Summary of visual functions of patient P.S.

Basic perceptual processes
Visual ®eld Slower than normals on left superior ®eld
Acuity 0.7 bilaterally
Contrast Nicolet contrast sensitivity test: OK
Colour perception (Ishihara) 12/17, lower range
Low-level visual processing
Benton line orientation Normal (57/60)
Birmingham Object Recognition Battery (BORB)

Object copying test 1 OK
Line length (test 2) OK
Size (test 3) OK
Orientation (test 4) OK
Gap position (test 5) OK
Overlapping shapes (test 6) OK, slowed down for three subtests
Minimal feature match (test 7) OK
Foreshortened views (test 8) OK

Object recognition
BORB (test 10) Object decision task OK
Object decision task on computer OK (98%)

Objects: 946 ms; non-objects: 1626 ms
BORB (test 11) Item match (class recognition) OK
BORB (test 12) Semantic association OK
Object naming (Colorized Snodgrass and Vanderwart) OK

Short-term visual memory
Test de la ruche (French) OK

Long-term visual memory
Doors test OK
Rey complex drawing OK

Face processing
Benton face recognition test 27/54 (strongly impaired); 32 s
Warrington face recognition battery 18/25 (impaired, percentile 3)

Reading Slow but accurate
Visual imagery

Object Drawings (test 9: BORB) OK
Reaction Time (phasic alert) Slower than normals, percentile 5
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mon objects (object databank at http://www.cog.brown.edu/

~tarr/stimuli.html) were used. Stimuli were presented to the

subjects via a video projector, a front-projection screen and a

system of mirrors fastened to the head coil. The visual ®eld

spanned by this set-up was approximately 15° 3 11°.

Scanning procedures. For anatomical scans, experiments

were performed on a 1.5 T whole-body ECLIPSE system

(Marconi Medical Systems, Cleveland, OH, USA) using the

standard head coil con®guration (body coil for excitation,

head coil for detection). Acquired multi-slice volume was

positioned on sagittal scout images. A ®rst GRE (gradient-

recalled-echo) T1-weighted sequence [TR (repetition

time) = 162 ms; TE (echo time) = 4.47 ms; ¯ip = 80°; FOV

(®eld of view) = 250 mm; matrix = 256 3 256; slice

thickness = 5 mm] was performed to acquire the same volume

as in the functional session. Anatomical reference images

consisted of a 3D GRE T1-weighted sequence (TE = 15 ms;

FOV = 250 mm; matrix = 256 3 256; slice

thickness = 1.25 mm).

For the fMRI localizer experiment, functional imaging

consisted of an echo planar imaging (EPI) GRE sequence

(TR = 3000 ms; TE = 40 ms; ¯ip = 80°; FOV = 250 mm;

matrix = 128 3 128; 30 contiguous 5 mm axial slices).

Epochs of face and object presentations (18 s, 6 3 TR) were

counterbalanced and separated by baseline epochs (®xation

cross, 9 s; 3 TR). Two runs were performed, with six epochs

of each experimental condition (faces or objects) in each run.

In each face/object epoch, 24 stimuli were presented for

750 ms, without any offset, but a small shift of position

(20 pixels) between consecutive images. Twenty different

images were used in each epoch, with four images repeated

twice consecutively, and subjects were required to detect the

repetitions (one-back task) by pressing a response key. In

addition, patient P.S. was scanned twice, with the same

paradigms, in two different sessions at a 5 month interval in

order to ensure reproducibility of our ®ndings.

Data analysis. Collected data was processed with cross-

correlation analysis (Bandettini et al., 1993) after motion

correction (Woods et al., 1992) using MEDX software

(Sensor Systems, Sterling, VA, USA) (Gold et al., 1998).

Data were smoothed spatially by convolution with a Gaussian

[full width half maximum (FWHM) = 6 3 6 3 6] kernel. The

cross-correlation, expressed in terms of Z-values (Le Bihan

et al., 1993) was calculated pixelwise between a delayed box-

car function and the set of measurements, without temporal

auto-correlation correction (Friston et al., 1995).

Individual maps were then normalized to the Talairach

space (Talairach and Tournoux, 1988). Afterwards, the

statistical distribution of the Z-values for each subject was

calculated and a probability value for each Z-value was

attributed. Clusters size of >0.08 cm3 (>10 voxels; voxel size

after normalization was 2 3 2 3 2 mm3) showing statistically

signi®cant Z-score (typically Z-threshold = 3.0, at P < 0.002,

uncorrected) in the faces±objects comparison were con-

sidered (Forman et al., 1995). In addition, clusters with signal

intensity <50% of the mean intensity of the functional images

were ruled out, in particular in the vicinity of P.S. lesions.

Results
Neuropsychological investigations
Computer tests of face processing
The results of the face processing tests in P.S. and normal

controls are given in Table 2. P.S. was impaired at a sex

decision task, both in accuracy and sensitivity (percentage:

Z = 7.94, P < 0.001; A¢: Z = 8.30; P < 0.001) and response

times (Z = 7.77, P < 0.001). Although she could discriminate

faces of different expressions, P.S. was not as good as normal

subjects at these tasks (®rst block: percentage: Z = 21,

P < 0.001; reaction times: Z = 9.66, P < 0.001; second block:

percentage: Z = 0.79, NS; reaction times: Z = 3.96, P < 0.001).

As for judging the age of faces, P.S. had a normal

performance at this task (accuracy: 90%; Z = 1.282,

P = 0.10), but was signi®cantly slower than control subjects

(Z = 8.84, P < 0.001). Finally, P.S. was strongly impaired at a

Fig. 2 Examples of stimuli used in testing P.S.'s face and object
perception. (A) Two pictures of faces presented simultaneously
under different viewpoint. (B) Two pictures of cars used in the
study. (C) Two novel (`scott' objects, http://www.cog.brown.edu/
~tarr/stimuli.html).

FFA activation with OFA damage in acquired prosopagnosia Page 5 of 15



face matching task, both in accuracy and sensitivity (per-

centage: Z = 7.74, P < 0.001; A¢: Z = 11; P < 0.001) and she

was also much longer than control subjects (reaction times:

Z = 4.23, P < 0.001).

Discrimination of non-face objects from visually
homogenous categories
As indicated in Table 3, P.S.'s performance was good,

although slightly lower than the age-matched controls

(sensitivity: Z = 2.23; P < 0.05) due to her higher rate of

false alarms, but she was not signi®cantly slower then

controls (Z = 1.67, not signi®cant). In the ®rst two blocks,

objects were presented simultaneously in the same viewpoint.

For set A, P.S.'s sensitivity was very good; she made only

three mistakes but she was slower than the controls (Z = 4.19,

P < 0.001). A similar pattern was found for set B, which was

more dif®cult overall, objects being more similar to each

other. P.S.'s sensitivity was in the normal range (see Table 3),

but she was also slower than the controls (Z = 4.48, P < 0.001).

Finally, we ran a block of trials with the different and same

trials presenting objects under different viewpoints. Again,

P.S.'s performance was within the normal range, but she was

slightly slower than normal controls (Z = 2.45, P < 0.01) and

hits (Z = 2.19, P < 0.05).

Neuroimaging study
A signi®cant activation for the comparison between faces and

objects was found in the right middle fusiform gyrus for all

the normal subjects (P < 0.002 uncorrected, 10 voxels

minimum, see Table 4 and Figs 3 and 5). This is the region

that has been termed the FFA (Kanwisher et al., 1997) and

will be referred to in this paper as the right fusiform face area

(rFFA). The mean coordinates of activation for this region

(Table 4) in the Talairach coordinates correspond to the

coordinates found in previous neuroimaging studies (e.g.

Kanwisher et al., 1997; Gauthier et al., 2000; Rossion et al.,

2000). Compared with the Talairach-transformed individual

brain of our prosopagnosic patient P.S., this average

activation corresponds to an area of cortex completely spared

by the lesions (Figs 1 and 6). Most importantly, when P.S.

was tested in the same experiment, the rFFA presents a

signi®cant differential response between faces and objects

just like normal subjects (Figs 1, 4 and 6; Table 5).

Furthermore, the extent and height of the rFFA activation

in P.S. do not differ from normal controls (see Figs 3±6;

Table 5). Structurally and functionally, her rFFA thus appears

to be perfectly normal, and these observations were replicated

after an interval of several months (Tables 5 and 6, Fig. 4).

These observations were made despite the fact that, as

expected, P.S. performed quite well in the one-back object

discrimination task (37 out of 48 correctly responded

<750 ms; mean reaction times for correct trials: 499 ms),

but her performance was very low for the face stimuli (12 out

of 48; 526 ms).

In most normal subjects (n = 9 out of 11), there was also a

signi®cantly larger activation for faces compared with objects

in the right inferior occipital cortex [Table 4; Fig. 5; `right

occipital face area' (rOFA)]. The coordinates of the maxima

Table 2 Summary of P.S.'s performance during the computer tests on face processing

Control subjects (mean age: 51 years) P.S. (age 50 years)

Accuracy (%) Reaction times (ms) Accuracy (%) Reaction times (ms)

Gender decision 96 1162 79 3316
Facial expression

Block 1 (joy, fear, anger) 98 1318 77 2265
Block 2 (disgust, sadness, surprise) 89 1468 88 2348

Age assessment 96 1218 92 2315
Face matching 90 2721 62 5105

Table 3 Summary of P.S.'s performance during the computer tests on object processing

Control subjects P.S.

Accuracy (%) Reaction times (ms) Accuracy (%) Reaction times (ms)

Cars 90 2437 83 3218
Novel objectsÐsame viewpoint (set A) 97 1798 95 3202
Novel objectsÐsame viewpoint (set B) 79 4071 82 4412
Novel objectsÐdifferent viewpoint 77 5158 72 6571
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of activation in the group analysis correspond to a region that

has been damaged by the lesion in P.S.'s brain (Figs 1 and 6).

Furthermore, the individual Talairach coordinates for the

maximum of activation in the rOFA of each subject also

correspond spatially to a structurally damaged area of cortex

in P.S.'s brain (Fig. 6).

In the left hemisphere, a number of subjects (n = 8 out of

11; see Table 4) showed a signi®cant increase in the left

middle fusiform gyrus for faces (±objects). Strikingly, these

areas of activation were all localized in a region that is

completely damaged in P.S.'s brain (Fig. 6). Few (®ve out of

11) subjects also showed a signi®cant differential response to

faces in an area of the left inferior occipital cortex (Fig. 6).

For P.S., there was a small but signi®cant extent of activation

in the left inferior occipital cortex only in the ®rst session,

which was posterior to the damaged area. However, the mean

signal intensity of this activation was reduced by 60%

compared with the mean intensity of the functional images,

such that this activation in the vicinity of the lesion may

re¯ect an artefactual combination of partial volume and head

motion effects.

Finally, as described previously (e.g. Epstein and

Kanwisher, 1998), there was a signi®cant increase of

activation for the opposite contrast (objects±faces) in a

more medial and anterior region of the temporal lobe, in the

parahippocampal gyrus, for both P.S. (P < 0.002; size

>10 voxels; see Table 6; Fig. 3) and the normal controls (11

out of 11 subjects at the same threshold).

Discussion
A selective de®cit at recognizing faces
On the basis of the patient's complaints and her results at

classical object recognition tests (Table 1), P.S.'s case can

arguably be de®ned as one of the most selective de®cits for

face recognition that has been described in the neuropsycho-

logical literature. She is perfect at object recognition and

naming. In this respect, she represents a clearer case of

Table 4 Mean coordinates, level of activation and size of the functional regions observed in all the normal control
subjects

Right FFA Talairach Left FFA Talairach

x y z Z-score n voxels x y z Z-score n voxels

S1 38 ±62 ±15 4.66 108 ±33 ±46 ±19 4.62 16
S2 45 ±62 ±17 4.03 219 ±28 ±61 ±13 3.24 14
S3 38 ±46 ±16 3.74 69 ±37 ±50 ±12 3.63 5
S4 46 ±50 ±15 3.9 314 ±35 ±49 ±17 4.66 191
S5 42 ±44 ±9 5.23 90 ±41 ±44 ±14 5.08 25
S6 41 ±48 ±14 3.46 45 ±40 ±48 ±13 3.41 16
S7 32 ±53 ±21 3.38 27
S8 31 ±54 ±25 2.92 5 ±33 ±67 ±22 4.46 60
S9 48 ±41 ±18 2.80 5
S10 47 ±40 ±15 3.16 33
S11 47 ±54 ±13 4.23 417 ±38 ±58 ±11 4.49 161
Mean 6 SE 41 62 ±50 62 ±16 61 11/11 subjects ±36 62 ±53 63 ±15 61 8/11 subjects

Right OFA Talairach Left OFA Talairach

x y z Z-score n voxels x y z Z-score n voxels

S1 37 ±87 ±3 4.74 55
S2 ±33 ±80 ±11 3.02 5
S3 ±35 ±83 ±14 3.90 44
S4 27 ±83 0 3.62 46 ±29 ±83 ±11 3.99 50
S5 38 ±69 ±11 5.00 50
S6 34 ±80 ±10 3.30 30
S7 48 ±76 3 3.40 25 ±37 ±78 ±18 3.36 17
S8 38 ±73 ±19 2.97 10
S9 44 ±80 ±11 3.4 49 ±34 ±81 ±18 3.45 19
S10 31 ±93 ±12 3.26 11
S11 42 ±83 ±3 4.41 97
Mean 6 SE 38 6 2 ±80 6 2 ±7 6 2 9/11 subjects ±34 6 1 ±81 6 1 ±14 6 2 5/11 subjects

A signi®cant faces±objects difference was clearly observed in 11 subjects in the right middle fusiform gyrus, albeit slightly lower for two
subjects (5 voxels, in italics). Eight subjects presented signi®cant differences in the left fusiform gyrus and in the right inferior occipital
cortex (rOFA), and it was slightly below threshold for subject S8. In the left hemisphere, a small subset of subjects (®ve out of 11) but not
P.S., presented a larger faces±objects difference in the inferior occipital cortex.
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prosopagnosia than most previously well-described cases of

acquired prosopagnosia, who presented evident de®cits and

complaints at object recognition, such as patients L.H. (e.g.

Levine and Calvanio, 1989; Farah et al., 1995), S.M. and C.R.

(Gauthier et al., 1999), or E.L.M. (Dixon et al., 1998) for

instance. Although the distinction between apperceptive and

associative (prosop)agnosia is certainly not clear-cut (see

Farah, 1990), P.S. is de®nitely of the former type, as shown

by her impairment at simultaneous face matching tasks.

P.S. is also slightly impaired at other face processing tasks

such as sex categorization and facial expression analysis,

whereas a number of previous cases of apperceptive

prosospagnosia have been reported to be intact at these

functions (e.g. Tranel et al., 1988). Evidence from functional

imaging in humans (e.g. Sergent et al., 1992; Morris et al.,

1998) and neurophysiological recordings in monkeys (e.g.

Hasselmo et al., 1989) indicates that facial expression

processing and face recognition depend on separate brain

substrates, but that they probably share several primitive

perceptual mechanisms that could be impaired in P.S.'s case

due to the posterior localization of her lesions. The fact that

there was no activation of her amygdala (faces compared with

objects P > 0.05, uncorrected), a region that is involved in

emotional aspects of face processing (Haxby et al., 2000) is

inconclusive because there was not any activation in this

region for any of the control subjects for the face±object

comparison.

P.S. has no problem with object perception, matching,

recognition and naming. She also performed at a normal level

and she was not signi®cantly slower than normal controls

(one control was actually slower than P.S.) at a within

category discrimination task of control objects, namely cars.

Fig. 3 Localization of the fusiform and occipital `face areas' and the parahippocampal place area in a few normal subjects (with a similar
level of activation as P.S.; see Table 5).
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When tested with novel objects sharing identical surface

properties but differing slightly by their overall shape and the

shape of their parts (not their organization), P.S.'s perform-

ance was again in the normal range. She was slightly slowed

down overall, which should not be surprising given her

general slowing down typical of brain-damaged subjects (e.g.

Benton, 1986) and the fact that even normal control subjects

were also particularly slow at this task (>2000 ms on

average). Most importantly, however, increasing the visual

homogeneity of the distractors or presenting the objects under

different viewpoints caused a slight drop of performance and

an increase of response times that was similar for P.S. and for

normal subjects (Table 3). Other evidence reported elsewhere

(Rossion et al., 2002) also indicates that she is not more

sensitive than controls to manipulations of the level of

categorization in object discrimination tasks as used previ-

ously in other patients (Gauthier et al., 1999).

How can P.S.'s object recognition performance be so

remarkably preserved despite presenting such extensive

lesions of the extrastriate visual cortex (Figs 1 and 6)? One

possibility may be that non-face objects are recognized using

a single well-localized system, different than that for faces

and located in the medial ventral temporal cortex where the

larger activation for objects was found to be normal for P.S.

(see Figs 1 and 6). However, recent evidence suggests that the

discrimination of object categories, including faces, can be

carried out through a distinct pattern of response across a

wide expanse of cortex in the occipital and ventral part of the

temporal lobe (Ishai et al., 1999; Haxby et al., 2001). Because

large but also small amplitude responses in the ventral

temporal cortex carry information about the object appear-

ance, only very large bilateral lesions of the ventral lateral

and medial visual pathway would lead to impairments of

basic level object recognition according to this view. The fact

that P.S., despite extensive lesions of the ventral temporal

cortex, is still able to easily perform such basic level

discriminations, can be taken as supporting the view that

object recognition (including faces) at the basic level is

widely distributed (Ishai et al., 1999; Haxby et al., 2001):

there is still enough information carried out in the visual

cortex to perform basic level object recognition ef®ciently.

Yet, contrary to most objects, faces pose a special challenge

to the visual system because they belong to a highly visually

homogeneous category (Damasio et al., 1982) and need to be

recognized at the individual level for ef®cient social inter-

actions (Tarr and Gauthier, 2000; Tanaka, 2001). The

development of a visual expertize at recognizing faces at

the individual level appears to require the fast extraction of

con®gural relationships (Maurer et al., 2002), a mechanism

that may extend to the discrimination of non-face categories

from visually homogeneous categories following expertize

training (Gauthier and Tarr, 1997) and seems to be impaired

in P.S.'s case (Rossion et al., 2002).

The necessary integrity of the right hemisphere
face-sensitive areas in face processing
The lesions of prosopagnosic patients usually concern the

ventral part of the occipital and temporal cortex, bilaterally

(e.g. Damasio et al., 1982; Sergent and Signoret, 1992; Clarke

et al., 1997), with an area of maximum overlap between

lesions including the right posterior and middle fusiform

gyrus (Barton et al., 2002). Three recent case descriptions of

prosopagnosia with unilateral damage have also identi®ed the

right middle fusiform gyrus as a critical area for normal face

perception. In one case, the lesion concerned both the right

fusiform gyrus and the lateral occipital cortex (Wada and

Yamamoto, 2001), whereas in two other cases the lesion also

extends posteriorly but possibly spares the right lateral

occipital cortex, at least structurally (Uttner et al., 2002).

These observations are in agreement with the proposal that

the right middle fusiform gyrus or rFFA is a dedicated area

that is critical for face perception, or a `face module'

(Kanwisher et al., 1997; McCarthy et al., 1997). However, in

the present study, we observed a prosopagnosic patient

presenting a structurally intact right middle fusiform gyrus or

rFFA and, most importantly, a signi®cantly larger response to

faces±objects at this level (Figs 1 and 6). This result suggests

that this region was also intact functionally, at least as far as

basic level face categorization is concerned. These neuroima-

ging ®ndings are in agreement with a recent fMRI study that

disclosed a rFFA activation in a prosopagnosic patient (S.M.;

Fig. 4 (A) Percentage signal change (faces±objects) in the right
FFA of P.S. across the two different sessions (two runs in each
session). (B) Average time course of the magnetic signal in the
FFA during all the runs for P.S.
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Marotta et al., 2001), although this patient also presented

large de®cits at recognizing common objects (Gauthier et al.,

1999) and his lesions were mostly anterior (temporal lobe),

sparing the entire occipital lobe and the fusiform gyrus

bilaterally. Together, these ®ndings contradict the view that

the rFFA represents a module for face perception and

supports a critical role of other high-level visual regions for

normal face processing (ToveÂe, 1998; Haxby et al., 2000,

2001).

What is the localization of these high-level visual regions

that appear to be critical for normal face processing?

Although the region of the left FFA is damaged in P.S., it is

unlikely that the areas of the left occipital and temporal cortex

that respond more to faces in normal subjects are also critical.

Table 5 Comparison of the right FFA response observed in P.S. (scanned twice) and the
normal subjects

Subjects Talairach coordinates Z-mean Size (cm3)

x y z

S5 42 ±44 ±14 5.23 0.72
S1 38 ±62 ±15 4.66 0.86
S11 47 ±54 ±13 4.23 3.33
S2 45 ±62 ±17 4.03 1.75
S4 46 ±50 ±15 3.90 2.51
S3 38 ±46 ±16 3.74 0.55
S6 41 ±48 ±14 3.46 0.36
P.S.(1) 42 ±59 ±18 3.43 0.17
P.S.(2) 41 ±59 ±18 3.22 0.24
S7 32 ±53 ±21 3.38 0.22
S10 47 ±40 ±15 3.16 0.26
S8 31 ±54 ±25 2.92 0.04
S9 48 ±41 ±18 2.80 0.04

Subjects are ranked by order of magnitude in the height of activation for the difference between faces and
objects.

Table 6 Signi®cant activations (Z > 3.0) observed for P.S. during the two scanning sessions

Contrast Region Talairach coordinates Z-mean n voxels

x y z

Faces±objects 1 Fusiform gyrus RH 42 ±59 ±18 3.43 21
Other regions:

Middle/inferior temporal gyrus RH
Inferior/middle frontal gyrus Bil
Cingular gyrus

Objects±faces 1 Parahippocampal gyrus RH 30 ±42 ±15 4.43 106
Parahippocampal gyrus LH -23 ±43 ±12 3.73 36
Other regions:

Middle temporal gyrus LH
Superior parietal lobule LH

Faces±objects 2 Fusiform gyrus RH 41 ±59 ±18 3.22 30
Other regions:

Inferior/middle frontal gyrus Bil
Inferior parietal lobule RH

Objects±faces 2 Parahippocampal gyrus RH 31 ±42 ±16 4.44 136
Parahippocampal gyrus LH ±24 ±45 ±11 4.12 55
Other regions:

Middle temporal gyrus LH
Superior parietal lobule LH
Middle occiptal gyrus RH

RH = right hemisphere; LH = left hemisphere. The bilateral activation of the parahippocampal gyrus for the comparison between objects
and faces corresponds to the locus of activation de®ned as the `parahippocampal place area', which usually responds less to faces than to
other object categories.
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Indeed, several cases of prosopagnosia have been observed

previously with unilateral right hemisphere lesions (Landis

et al., 1988; Wada and Yamamoto, 2001; Uttler et al., 2002).

The functional integrity of the left face-sensitive areas was

unknown in these cases, although there was no evidence for a

decrease of blood ¯ow in the left hemisphere in the case

described by Wada and Yamamoto (2001). There are also a

number of cases with extensive lesions of the ventral occipital

and temporal left hemisphere without prosopagnosia that

have been reported in the literature (see Farah, 1990). Yet, it

has also been shown that a lesion to the left hemisphere, even

in right-handed humans, may be necessary at least in some

cases (Ettlin et al., 1992) to produce a prosopagnosic de®cit,

or even suf®cient (Mattson et al., 2000), thus pointing to the

individual-speci®c degrees of hemispheric dominance for

face processing.

If the necessary role of the left hemispheric regions

remains unclear, what our study indicates, however, is that

the rOFA is not only involved during face processing in

normals, but that it is a necessary component for such

normally functioning face processes to take place.

The face-sensitive response in the inferior occipital cortex

(rOFA), within the lateral occipital (LO) complex involved in

shape perception (Malach et al., 1995), is observed in many

neuroimaging studies (e.g. Halgren et al., 1999; Haxby et al.,

1999; Gauthier et al., 2000; Ishai et al., 2000; Rossion et al.,

2000). Yet, despite the robust co-occurrence of this region

with the FFA, authors have been quick to reject the possibility

that the OFA presents a particular sensitivity to faces

(Kanwisher et al., 1997), probably because of its relatively

early localization in the ventral pathway, and its somewhat

weaker face-sensitive response compared with the FFA

(Gauthier et al., 2000). On the other hand, Haxby et al.

(2000) included this OFA in their neuro-functional architec-

ture of face processing, suggesting that the rFFA receives

most of its input information for face processing directly from

Fig. 5 Average time courses of activation in the right fusiform `face area' and the occipital `face area' for
four control subjects illustrated in Fig. 3 (except for Subject 3, who was replaced here by Subject 1, who
in turn showed signi®cant activation in both regions).
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this region (see also Halgren et al., 1999). Although our data

suggest rather a role of feedback connections in leading to the

face-sensitive response of the OFA (see below), they

de®nitely support a critical role of the rOFA for normal

face processing, and thus a distributed processing model in

the ventral visual pathway for this function rather than a

sparse coding (Young and Yamane, 1992).

What is the neuro-functional relationship
between the OFA and FFA?
In their neuro-functional model of face processing, Haxby

et al. (2000) proposed that the rFFA receives most of its input

information for face processing directly from the posterior

rOFA, albeit suggesting the presence of feedback mechan-

isms between the two areas (see also Ishai et al., 2000).

According to this view, the rOFA is involved in the extraction

of individual facial features and project in turn to the rFFA,

which would respond more to the whole face con®guration.

This hypothesis is consistent with a classical hierarchical and

feedforward view of the visual system (Hubel and Wiesel,

1977), according to which the ¯ow of visual information goes

from more posterior visual areas to more anterior areas, with

an increase of the receptive ®eld and the complexity of the

visual information represented. At ®rst glance, this proposal

is also consistent with the observation that the rFFA, but not

the rOFA, is more activated when the subject's attention is

focused on the whole face versus single face features

(Rossion et al., 2000). The less robust differential activation

between faces and objects usually found at the level of the

rOFA is also considered as supporting the view of a

progressively increasing face-selectivity along the ventral

visual pathway (Grill-Spector et al., 1999; Halgren et al.,

1999).

However, the data reported here do not support this

hypothesis of a main feedforward processing of information

related to faces from the rOFA to the rFFA since there was a

normal activation of the FFA in the right hemisphere of P.S.,

despite a structurally and functionally damaged rOFA. In

addition, to our knowledge, there has not been any empirical

evidence in normal subjects supporting such a feedforward

and dependent processing of information from the OFA to the

FFA, whose differential function in face processing remain

largely unclear. Moreover, behavioural evidence clearly

suggests that the processing of faces as integrated wholes

has precedence over the processing of single face features

(Tanaka and Farah, 1993)Ðan observation that does not ®t

with a feedforward hierarchical model of face processing that

would go from processing features to whole faces.

Electrophysiological recordings in humans also show that

the peak latency of the N170 face-sensitive potential is

delayed for isolated face features, compared with the

response to whole face stimuli (e.g. Bentin et al., 1996).

For these reasons and given the data reported here, we suggest

that the larger response observed for faces compared with

objects as early as in the inferior occipital cortex (OFA) rather

arise from feedback connections from the rFFAÐan hypoth-

esis perfectly compatible with the concurrent and distributed

processing of information (Felleman and Van Essen, 1991;

De Yoe et al., 1994) as well as the presence of feedback

(Lamme and Roelfsema, 2000; Bullier, 2001) and re-entrant

phasic signalling (Edelman, 1993) in the visual cortex.

Recent studies using cooling techniques in monkeys indicate

that such feedback signals from higher order visual areas may

contribute to the emergence of functional responses in early

visual areas (Galuske et al., 2002; see also Bullier, 2001). If

such mechanisms were in place within the ventral visual

stream, the response to faces observed at the level of the

inferior occipital cortex could arise as a consequence of

higher-level face-sensitivity processes in the FFA, possibly to

guide the ®ne-grained visual analysis of faces for individual

discrimination (Gauthier et al., 2000) and old/new recogni-

tion (Rossion et al., 2003).

Although the ®ndings reported here suggest strongly that

the two right-sided face-sensitive regions and their possible

re-entrant interactions are critical for normal within-category

discrimination and recognition of human faces, the limited

temporal resolution of fMRI does not allow us to clarify the

nature of the dynamic interactions between these two

functional areas at this stage. Future neuroimaging investi-

gations of P.S. and other brain-damaged prosopagnosic

patients may be directed towards this goal of understanding

functional connectivity between visual areas (Friston, 2002).

As far as this prosopagnosic patient is concerned, future

neuroimaging studies will also have to clarify the exact

localization of the lesions with respect to the retinotopic

visual cortex and other extrastriate visual areas involved in

object recognition in the ventral temporal and occipital

Fig. 6 Schematic representation on a Talairach slice (z = ±14) of
P.S.'s lesions and the areas of activation in the ventral extrastriate
cortex for both P.S. and normal subjects. The lesions cover most
of the functional network involved during the perception of faces,
but spare completely the right middle fusiform gyrus, where the
`fusiform face area' is found in normal subjects.
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cortices (Ishai et al., 1999; Haxby et al., 2001), as well as to

test the sensitivity of the rFFA to within category discrim-

ination and recognition of faces.

Conclusions
Combining a neuropsychological and neuroimaging investi-

gation on a case of prosopagnosia, we showed that besides the

right middle fusiform gyrus (FFA), the right inferior occipital

cortex (OFA) is critical for normal face perception and that

the face-sensitive responses observed at the level of the

occipital cortex in normal subjects may arise from feedback

connections from the right FFA rather than from a

feedforward mode of processing. We suggest that a re-entrant

mechanism between these two regions in the right hemi-

sphere subtends within category discrimination and recogni-

tion of faces.
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