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A B S T R A C T

Recording direct neural activity when periodically inserting exemplars of a particular category in a rapid visual
stream of other objects offers an objective and efficient way to quantify perceptual categorization and char-
acterize its spatiotemporal dynamics. However, since periodicity entails predictability, perceptual categorization
processes identified within this framework may be partly generated or modulated by temporal expectations.
Here we present a stringent test of the hypothesis that temporal predictability generates or modulates category-
selective neural processes as measured in a rapid periodic visual stimulation stream. In Experiment 1, we
compare neurophysiological responses to periodic and nonperiodic (i.e., unpredictable) variable face stimuli in a
fast (12 Hz) visual stream of nonface objects. In Experiment 2, we assess potential responses to rare (10%)
omissions of periodic face events (i.e., violations of periodicity) in the same fast visual stream. Overall, our
observations indicate that category(face)-selective processes elicited in a fast periodic stream of visual objects
are immune to temporal predictability. These observations do not support a predictive coding framework in-
terpretation of category-change detection in the human brain and have important implications for understanding
automatic human perceptual categorization in a rapidly changing (i.e., dynamic) visual scene.

1. Introduction

The human brain is able to rapidly and effortlessly organize visual
information in the environment. With just a single glance, we can tell
almost instantly that a roundish object in our field of view is a face – not
a flower, a tennis ball, a clock, or any other type of object. This ability
to rapidly group currently experienced stimuli into meaningful cate-
gories – known as perceptual categorization – is surely one of the most
fundamental high-level brain functions, serving as the foundation for
memory, learning, language, affective processing, decision making, and
action execution.

In the visual domain, a powerful way to shed light on perceptual
categorization processes is to combine visual periodicity with direct
recording of neural activity, for instance using electroencephalography
(EEG). By embedding members of a specific category at a strict periodic
rate within a dynamic visual stream of items that do not belong to that
category, perceptual categorization processes of interest are projected
to a specified frequency in the EEG spectrum. At a rapid (and quasi-
continuous) rate, this approach can isolate category-selective visual
processes without post-hoc subtraction, in a manner that is both

objective and highly efficient (Jacques et al., 2016; Jonas and Rossion,
2016; Retter and Rossion, 2016). For example, Lochy et al. (2015) in-
vestigated lexical categorization processes by presenting participants
with a stream of non-word items a rate of exactly 10 Hz (i.e., 10 non-
words per second), with a word stimulus embedded as every fifth item.
Three minutes of this stimulation elicited an electrophysiological re-
sponse at the exact frequency of image presentation (i.e., 10 Hz), but
more importantly, a robust response at the exact periodicity of the word
items embedded in non-word sequence (i.e., 10 Hz/5 items = 2 Hz),
even in the absence of an overt lexical decision task. The authors in-
terpreted this 2 Hz signal to be a differential response to words com-
pared to non-words, as it could only have arisen if the response evoked
by words differed from that evoked by non-words (see also Lochy et al.,
2016). The same periodicity-based approach (i.e., Fast Periodic Visual
Stimulation, or FPVS) has also been used to examine human adults and
infants’ perceptual categorization of faces and natural object images
(e.g., Fig. 1; de Heering and Rossion, 2015; Rossion et al., 2015;
Jacques et al., 2016; Retter and Rossion, 2016). For example, Retter and
Rossion (2016) presented participants with a dynamic stream of object
images at a rate of 12.5 Hz (i.e., 80 ms per image), inserting face images

http://dx.doi.org/10.1016/j.neuropsychologia.2017.08.010
Received 15 March 2017; Received in revised form 12 July 2017; Accepted 5 August 2017

⁎ Correspondence to: Institute of Research in Psychology (IPSY) & Institute of Neuroscience (IoNS), University of Louvain 10 Place du Cardinal Mercier, Louvain-la-Neuve 1348,
Belgium.

E-mail address: bruno.rossion@uclouvain.be (B. Rossion).

Neuropsychologia 104 (2017) 182–200

Available online 12 August 2017
0028-3932/ © 2017 Elsevier Ltd. All rights reserved.

MARK

http://www.sciencedirect.com/science/journal/00283932
http://www.elsevier.com/locate/neuropsychologia
http://dx.doi.org/10.1016/j.neuropsychologia.2017.08.010
http://dx.doi.org/10.1016/j.neuropsychologia.2017.08.010
mailto:bruno.rossion@uclouvain.be
http://dx.doi.org/10.1016/j.neuropsychologia.2017.08.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuropsychologia.2017.08.010&domain=pdf


into the sequence every three, five, seven, nine, or 11 stimuli. In ad-
dition to finding a strong response at the image presentation frequency
of 12.5 Hz, they also observed a robust category-selective response at
each of the defined face periodicities (e.g., a face every seven images
gives a response at exactly 12.5 Hz/7 = 1.79 Hz), indicating there was
a differential response to faces as compared to objects. Given the very
rapid image presentation rate (each image was replaced after just
80 ms), and the use of a completely orthogonal task, the authors argued
that this category-selective response reflected automatic categorization
of faces vs. objects at the perceptual rather than decisional level. This
conclusion is supported by the application of this approach to in-
tracerebral recordings in a large group of human patients, identifying
and quantifying the face-selective responses in localized regions of the
right ventral occipito-temporal cortex (Jonas and Rossion, 2016).

Since the response of interest in FPVS designs depends on i) the
critical stimuli and the temporally surrounding distractors evoking
different responses, and ii) measuring a similar evoked response each
time a critical stimulus appears, using a large number of highly variable
exemplars (e.g., 50 natural face images and 200 natural object images
in Rossion et al. (2015)) ensures this response will capture both the
degree to which the visual system is able to discriminate the critical
category from others in the stream, as well as the extent to which it is
able to generalize across widely differing exemplars within the category
(Jonas and Rossion, 2016; Rossion et al., 2015; Retter and Rossion,
2016). Importantly, the reliance here on a periodic response also serves
to minimize low-level image confounds without artificially standar-
dizing low-level stimulus properties. When highly variable natural
images are used, the amplitude spectra of two categories may vary on
average, but will not vary consistently across a stimulus set. As such, a
given set of low-level cues will not occur reliably at the critical category
frequency, where the response of interest is measured. This claim is
borne out by the observation that phase-scrambled natural images, in
which the amplitude spectra are preserved, but structural information is
removed, do not elicit category-selective responses in FPVS designs (de
Heering and Rossion, 2015; Rossion et al., 2015; for an extended dis-
cussion see Retter and Rossion, 2016)

An objective measure of high-level category-selective processing

that taps both between-category discrimination and within-category
generalization – i.e., the core abilities which underlie successful per-
ceptual categorization in natural settings – is an exciting development
for the field of visual perception. Moreover, the high signal-to-noise
ratio enjoyed by the approach makes it an ideal method for testing
young children or clinical populations, who may have particularly noisy
EEG signals. Yet an important and outstanding theoretical issue is
whether the category-selective signal yielded by periodicity is gener-
ated in part by temporal expectation. That is, since the critical category
exemplars always appear at periodic intervals in FPVS, and since the
entire sequence is itself a rhythmic stimulation (Jones, 1976), partici-
pants in these tasks could conceivably form reliable expectations (either
explicit or implicit) about exactly when critical stimuli will appear
(McAuley and Jones, 2003). Indeed, a number of studies have shown
that regular (“rhythmic”) stimulation can induce strong temporal ex-
pectations, thereby facilitating sensory processing of stimuli both in the
auditory (e.g., Morillon et al., 2016) and visual domains (Mathewson
et al., 2010; Rohenkohl et al., 2012; Cravo et al., 2013; Breska and
Deouell, 2014). Generally, these effects are expressed in terms of
greater encoding precision, higher perceptual sensitivity and decreased
response times in behavioral tasks (Rajendran and Teki, 2016). More-
over, behavioral studies employing rapid serial visual presentation
(RSVP; Potter and Levy, 1969), a stimulation that is similar in kind to
FPVS, have shown that identification accuracy for targets embedded in
these streams improves as a function of number of distractors before
target onset, suggesting that temporal expectation is “tuned” over the
course of the RSVP sequence itself (Ariga and Yokosawa, 2008).

If the rhythmicity of the FPVS approach (e.g., images appearing at a
defined periodic rate), combined with the temporal predictability of
critical category exemplars (e.g., a face after every 9 object images),
does indeed elicit temporal expectations in participants, then the ca-
tegory-selective response it yields may not solely reflect processes re-
lated to perceptual categorization, but may be generated in part by
temporal expectation. As a case in point, the category-selective re-
sponse for faces embedded in a stream of objects is known to be com-
prised of several components starting at ~ 100 ms and lasting up to ~
500 ms after face onset (Rossion et al., 2015; Jacques et al., 2016;

Fig. 1. Expt. 1 sequence design. We presented images at a rate of exactly 12 Hz by sinusoidally modulating the contrast of each from 0–100-0% (blue solid lines). In both conditions, the
90 s sequence contained 60 natural face images and numerous natural object images (e.g., vehicles, animals, buildings, trees, etc.). (A) In the periodic condition, faces appeared at regular
intervals every 18 stimuli (orange dashed lines). (B) In the nonperiodic condition, faces were spaced at irregular intervals, appearing anywhere after 11–23 object images (orange dashed
lines). Participants did not respond to the faces, but instead monitored a central fixation cross overlaid on the images for color changes. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article).

G.L. Quek, B. Rossion Neuropsychologia 104 (2017) 182–200

183



Retter and Rossion, 2016). Given that behavioral detection of a face can
be achieved within 100–300 ms following stimulus onset (Rousselet
et al., 2003; Crouzet et al., 2010; Crouzet and Thorpe, 2011), it could
well be the case that the later aspects of this neural response may be
generated or at least largely modulated by temporal expectation about
the appearance of faces in the visual stream. Indeed, faces are perhaps
the ideal stimulus with which to test the role of temporal expectation in
driving the category-selective response in periodicity-based designs,
since observers can easily form a visual template for this category based
on the cardinal arrangement of facial features. Moreover, face percep-
tion is known to be highly sensitive to top-down effects, as evidenced by
phenomena like the hollow-face illusion (Gregory, 1970) and face re-
cognition of 2-tone pictures ("Mooney faces"; Mooney, 1957; Cavanagh
and Leclerc, 1989; Moore and Cavanagh, 1998).

Here we present two EEG experiments that shed light on the important
and unresolved issue of whether temporal predictability modulates im-
plicit perceptual categorization in the context of dynamic visual stimula-
tion. In Experiment 1, we compare the category-selective response elicited
by FPVS sequences in which the critical face stimuli are either temporally
predictable (embedded at periodic intervals) or unpredictable (embedded
at nonperiodic intervals). If temporal expectations about faces contribute
to the category-selective response, then the response to periodic and
nonperiodic faces should reliably differ. In Experiment 2, we examine the
neural response to a violation of temporal predictability in an FPVS se-
quence, by introducing rare random omissions of periodic (i.e., expected)
faces after a period of familiarization. Here we predict that non-face sti-
muli which violate temporal expectations (i.e., missing faces) should elicit
a different response than non-face stimuli about which participants cannot
build any temporal expectations.

2. Experiment 1

Our goal in Experiment 1 was to dissociate the relative contribution
of two factors that are typically conflated in FPVS designs – periodicity
and temporal predictability. To this end, we embedded face stimuli at
either fixed or random intervals in a sequence of variable object images.
After verifying this manipulation was effective, we employed a novel
approach we term ‘False-Sequencing’ to impose a new face periodicity
of exactly 1 Hz on both the predictable (i.e., periodic) and un-
predictable (i.e., nonperiodic) conditions. In this analysis, face peri-
odicity is held constant (always 1 Hz) while temporal predictability is
allowed to vary. If temporal predictability confers a processing ad-
vantage on the critical face stimuli in FPVS sequences, then the cate-
gory-selective response elicited by temporally predictable and un-
predictable faces will differ in some way. Under a predictive coding
framework, we might expect this difference to take the form of an at-
tenuated response to periodic faces as compared to nonperiodic faces,
since sensory input corresponding to the former stimulus is consistent
with current high level expectations and thus effectively redundant
(Rao and Ballard, 1999; Friston, 2005; Alink et al., 2010; Kok et al.,
2012a). On the other hand, if temporal expectation sharpens sensory
representation by suppressing neural responses that are inconsistent
with current expectations (Lee and Mumford, 2003), then periodic faces
might be expected to elicit a stronger category-selective response than
nonperiodic faces, since noise is reduced in the former case.

3. Experiment 1 methods

3.1. Participants

Twenty persons (nine females) aged between 18 and 26 years took
part in this study in exchange for payment. All were right-handed, with
normal or corrected-to-normal vision, and had no history of neurolo-
gical illness. In accordance with the University of Louvain Biomedical
Ethics Committee guidelines, we obtained written informed consent
from all participants prior to testing.

3.2. Stimuli

Stimuli were 200 color images of various non-face objects (e.g., animals,
plants, manmade structures/objects) and 100 color images of human faces.
We resized each image to 256 ×256 pixels and equalized their mean lumi-
nance values in MatLab (R2012b). As in our previous studies that used a
different but comparable stimulus set (e.g., Rossion et al., 2015), we delib-
erately did not segment faces/objects from their original naturalistic back-
grounds, such that the viewpoint, lighting, and image composition varied
widely across the full stimulus set (see Fig. 1 for examples). During the sti-
mulation sequence, each image appeared on a uniform grey background and
subtended 9.077° of visual angle. A small black fixation cross (subtending
0.788° of visual angle) overlaid the images throughout the sequence.

3.3. Procedure

Participants sat in a darkened room and viewed a computer monitor at
a distance of 80 cm. They viewed stimulation sequences consisting of a
two second pre-stimulation period with only the central fixation cross, a
two second fade-in, a 90 s sequence of rapid images presented at a periodic
rate of exactly 12 Hz (12 images per second), and a three second fade-out.
We used a 12 Hz stimulation rate since generic face-categorization (i.e.,
the detection of faces in the visual environment) can be achieved within
the 83 ms image duration that 12 Hz provides (e.g., Retter and Rossion,
2016). Second, as 12 Hz is well above the range of frequencies that leads
to large face-selective responses (i.e., 6 Hz, Alonso-Prieto et al., 2013), this
image presentation rate allows us to better dissociate face-selective pro-
cessing from general visual processing. We used customized software
programmed in Java to sinusoidally modulate the contrast of each image
from 0% to 100–0% over a period of 83.33 ms (see Fig. 1; Movie 1). Since
stimuli are still visible at low contrast, this ensured a near-continuous
stimulation, with no perceptual interruption between images (see Retter
and Rossion, 2016, for a comparison of sinusoid and squarewave stimu-
lation). We instructed participants to fix their gaze on the central cross
overlaid on the images, and to press a key whenever it changed color
(200 ms change duration; 12 changes in each stimulation sequence;
minimum 2 s (s) between consecutive changes). In the periodic condition,
sequences contained randomly selected non-face images with a face image
embedded as every 18th stimulus (Fig. 1A). This stimulation should elicit
two periodic EEG responses: one at 12 Hz, reflecting visual processing
common to both face and non-face stimuli (referred to as the common
response), and one at 12 Hz/18 (i.e., 0.67 Hz), reflecting the differential
response to faces compared to other images (referred to as the category-
selective or face-selective response, Retter and Rossion, 2016). Non-
periodic sequences were identical to periodic sequences, save that the face
images appeared at irregular intervals during the rapid sequence (11–23

Video S1. Example stimulation sequence from periodic condition (90 s), in which natural
object images appeared at a fast periodic rate of exactly 12 Hz, with various natural face
images embedded every 18 stimuli (i.e., 12 Hz/18 = 0.67 Hz)". Supplementary material
related to this article can be found online at http://dx.doi.org/10.1016/j.
neuropsychologia.2017.08.010.
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non-face images between the face images, see Fig. 1B). Here we expect to
find only the common response at 12 Hz, since there is no second peri-
odicity embedded in the sequence. Participants viewed four stimulation
sequences of each type in a pseudorandom order, each containing exactly
60 face image presentations.

3.4. EEG acquisition

We acquired high-density 128-channel EEG during sequence viewing
using an ActiveTwo Biosemi system with a 512 Hz sampling rate (http://
www.biosemi.com/). We monitored eye-movements via four external
electrodes placed at the outer canthi of the eyes, and above and below the
right eye. The electrode offset criterion cut-off was 20 µV.

3.5. Analysis

3.5.1. Behavioral analysis
We calculated the accuracy and response time (RT) for each fixation

cross color change during the stimulation sequence, removing values
that occurred< 250 ms or> 1500 ms following change onset.

3.5.2. EEG analysis
We analyzed EEG data using the open source toolbox LetsWave5

(http://nocions.webnode.com/letswave) running on MatLab R2012b
(MathWorks, USA). Filtering was implemented using the 'butter' and
'filtfilt' functions of this toolbox. All EEG waveform analysis procedures
described here have been extensively documented in recent publica-
tions (Liu-Shuang et al., 2014; Rossion, 2014; Rossion et al., 2015;
Jacques et al., 2016; Retter and Rossion, 2016). We carried out all
statistical analyses in R (https://www.r-project.org/), using repeated
measures analysis of variance (ANOVA) to examine main effects and
interactions. We used Greenhouse-Geisser corrections to adjust degrees
of freedom wherever the assumption of sphericity was violated. Sig-
nificant main effects were followed up with posthoc Tukey HSD con-
trasts, and significant interactions decomposed using two-tailed paired
t-tests (Bonferroni corrected).

3.5.2.1. EEG pre-processing. We excluded data from two male
participants due to excessive artefact on multiple channels in the EEG
trace. Before removing these participants, we verified that both showed
a significant face-selective response in the EEG spectrum. For each of
the remaining 18 participants, we removed slow voltage changes of
non-neural origin and irrelevant EMG artefact by applying a zero phase-
shift Butterworth band-pass filter (4th order, 0.05–100 Hz) to the raw
EEG trace (Luck, 2005). We then removed AC electrical noise at 50 Hz,
100 Hz, and 150 Hz using an FFT multi-notch filter (Hanning window,
width = 0.5 Hz), and then segmented 99 s epochs relative to the
starting trigger of each stimulation sequence (−2 s to 97 s). To remove
blink artefact, we applied an independent components analysis (ICA)
with a square mixing matrix (Hyvarinen and Oja, 2000) and removed a
single component identified by visual inspection of the waveform and
corresponding topography. Artefact-prone channels with deflections
greater than 100 μV in at least two trials were replaced using linear
interpolation of neighboring clean channels (less than 5% of channels
per participant). Since we recorded high-density EEG, we re-referenced
each channel's signal using the mean of all 128 scalp channels (rather
than single reference electrode), and relabeled each to match the
standard 10–20 system (for additional detail see Rossion et al., 2015).

3.5.2.2. Frequency-domain analysis. Following pre-processing, we
segmented an epoch for each sequence containing an integer number
of cycles of the face presentation frequency (0.67 Hz), resulting in an
88.51 s epoch containing exactly 59 face presentation cycles for each
stimulation sequence. This ensured that a single frequency bin would be
centered on the category-selective frequency of interest (0.67 Hz) in the
EEG spectrum. We averaged the four epochs for each condition before

applying a Fast Fourier Transformation (FFT) to extract a normalized
amplitude spectrum for each channel ranging between 0 and 256 Hz.
The frequency resolution of these spectra was very high, as determined
by the inverse of the sequence duration (i.e., 1/88.5 = 0.0113 Hz). To
identify significant response signal at the relevant stimulation
frequencies (i.e., 12 Hz, 0.67 Hz, and harmonics), we computed a z-
score at each discrete frequency bin (e.g., Liu-Shuang et al., 2014;
Rossion, 2014; Rossion et al., 2015; Jacques et al., 2016; Retter and
Rossion, 2016) using the amplitude spectra pooled across all
participants, conditions, and scalp channels. Here we specified a
noise range comprised of the 20 frequency bins neighboring the
frequency of interest, excluding the immediately adjacent bins and
the local maximum and minimum amplitude bins (e.g., Rossion and
Boremanse, 2011; Rossion et al., 2012; Retter and Rossion, 2016). We
subtracted the mean amplitude of this noise range from the amplitude
at the frequency of interest, and divided the result by the standard
deviation of amplitudes in the noise range. The advantage of
determining statistical significance this way is that unlike t-tests
(which rely in inter-individual variance), z scores can computed
either at the group level or for each participant individually (for an
extended discussion of detecting significant signal at a specified
frequency, see Appendix 2 of Norcia et al., 2015). As in our previous
studies (e.g., Jacques et al., 2016), we considered response signals with
a z-score greater than 3.1 to be significant (p< .001, one tailed, i.e.,
signal> noise), and selected only these frequencies for further analysis.
Note that the use of one-tailed tests is well justified in this context, as
the goal here is to identify frequencies at which the signal is
significantly greater than the noise in the surrounding bins (instances
in which the signal is significantly lower than the surrounding bins are
of no relevance).

To take into account the variation in noise across the EEG spectrum,
we performed a local baseline-subtraction on the raw amplitudes for each
condition using the same baseline range as for z-score calculation (see
above). To quantify the category-selective response, we summed the
baseline-corrected values across all relevant harmonic frequencies
(Jacques et al., 2016; Retter and Rossion, 2016) in two ways: i) at the
global level by pooling the information across all scalp channels, and ii)
within functional regions-of-interest (ROIs) compatible with the stable
bilateral occipito-temporal pattern typically elicited by FPVS paradigms
(Rossion et al., 2015; Jacques et al., 2016; Retter and Rossion, 2016). We
defined the ROIs by averaging the four channels in each hemisphere with
the greatest summed-harmonic response averaged across-conditions, re-
sulting in a left occipito-temporal ROI (averaged over channels P9, PO7,
PO9, and PO11) and a right occipito-temporal ROI (averaged over chan-
nels P10, PO8, PO10, and PO12). The central occipito-parietal ROI was the
average of the four channels with the largest common response at 12 Hz
(averaged over channels Oz, POOz, PO4h, and POO6).

3.5.2.3. False-sequencing analysis. To dissociate the contribution of
periodicity and temporal predictability to the category-selective
response, we used a novel ‘false-sequencing’ approach. For each
stimulation sequence in each condition, we segmented a 1000 ms
epoch around each face onset (−500 ms to 500 ms), resulting in ~
60 segments per sequence. We sequenced these 1000 ms segments by
aligning the first sample of each epoch with the last sample of the
preceding epoch, producing a new 60 s continuous EEG trace. To
compensate for introduced drift in this newly created ‘false-sequence’,
we subtracted the mean voltage on each channel and linearly de-
trended the data. We then cropped each false-sequence to be exactly
55 s (corresponding to an integer number of number of cycles of
0.67 Hz), and averaged these by condition. Remaining analyses for
the false-sequence data were as described for the frequency-domain
analysis above. Additionally, we used the ‘BayesFactor’ package in R
(http://bayesfactorpcl.r-forge.r-project.org/) to calculate a Bayes factor
for each possible model of the false-sequence data containing the
factors Periodicity and ROI.

G.L. Quek, B. Rossion Neuropsychologia 104 (2017) 182–200

185

http://www.biosemi.com/
http://www.biosemi.com/
http://nocions.webnode.com/letswave
https://www.r-project.org/
http://bayesfactorpcl.r-forge.r-project.org/


3.5.2.4. Time-domain analysis. In a separate analysis, we compared the
response to periodic and nonperiodic faces in the time-domain. Here we
applied a zero phase-shift Butterworth low-pass filter (4th order, 30 Hz
cut off) to the raw EEG trace before cropping each stimulation sequence
to an integer number of cycles of the image presentation rate (i.e.,
12 Hz). We then isolated the differential response to faces compared to
objects, by applying an FFT multi-notch filter (Hanning window,
0.05 Hz width) at 12 Hz, 24 Hz, and 36 Hz to selectively remove
signal corresponding to the image presentation rate. We then
segmented a 1000 ms epoch around each face onset (−200 ms to
800 ms) and averaged the resulting ~ 240 epochs for each condition.
We applied a standard baseline-correction procedure by subtracting the
mean amplitude in the−167 to 0 ms time window preceding face onset
(i.e., 2 cycles at 12 Hz). In each ROI, we compared the conditional mean
waveforms by conducting a two-tailed paired t-test at each of the 513
time points. We inspected these obtained t-values relative to two
significance criteria (p< .01 uncorrected, and p< .05, corrected for
multiple comparisons). We corrected for multiple comparisons using a
permutation procedure capable of maintaining experiment-wise error
in time-series analysis (Blair and Karniski,1993; Finkbeiner and
Friedman, 2011). The steps for this procedure were as follows. First
we generated 100,000 permutations of our data by systematically
shuffling the periodic/nonperiodic labels for each participant's
conditional mean datasets (consisting of 513 time points). Assuming
the null hypothesis is true (i.e., there is no difference between periodic
and nonperiodic waveforms), the assignment of condition labels should
be arbitrary, such that each instance of permutated data is just as likely
to have occurred as our actual obtained data. In this way, the permuted
data arrangements represent 100,000 possible outcomes of our
experiment. For each permutation, we conducted a two-tailed paired
t-test at every time point (n = 513, for a total of 51.3 million
comparisons) and kept aside the maximum t-value (t|max|) given by
that permutation. Rank ordering the t|max| values obtained across all
permutations forms a reference distribution against which each
obtained t value can be compared. To maintain experiment-wise α at
0.05, we took the value in the t|max| reference distribution that cut off
0.025 of each tail as our critical t (see Blair and Karniski, 1993 for a
more detailed explanation of the rationale behind this procedure).

We assessed the similarity/difference of the time-domain response
to periodic and nonperiodic faces in a second way using multivariate
pattern classification (MVPA). Unlike the permutation testing described
above, MVPA does not rely on single channel waveform data (i.e., a
single averaged channel for each ROI), but considers fine differences in
the pattern of activity elicited by periodic and nonperiodic faces across
all channels simultaneously. We used an MPVA procedure for spatio-
temporal decoding in EEG introduced by Bode and colleagues (The
Decision Decoding Toolbox, available at http://ddtbox.github.io/
DDTBOX/; Bode and Stahl, 2014; Bode et al., 2016). Using the But-
terworth low-pass filtered data in which the image presentation fre-
quency of 12 Hz was preserved (i.e., not yet selectively removed by
notch-filtering), we extracted epochs corresponding to periodic faces
and nonperiodic faces (−166.66 ms to 500 ms) for each participant. We
used non-overlapping spatiotemporal analysis time-windows of 20 ms
(10 data points) for each of the 128 channels. This time-window moved
forward by 20 ms increments to cover the entire 666.66 ms epoch (Bai
et al., 2007; Das et al., 2010; Blankertz et al., 2011; Bode et al., 2012;
Bode and Stahl, 2014). At each time-window, we transformed the data
into a spatiotemporal pattern vector labelled by face periodicity. We
then trained an SVM classifier on 90% of the periodic and nonperiodic
vectors using LIBSVM (Chang and Lin, 2011), and tested it on the re-
maining 10% of vectors. We repeated this classification process using a
10-fold cross-validation procedure which took different, non-over-
lapping chunks of test and train data on each pass. To further guard
against any drawing biases that could influence classification, we re-
peated the ten cross-validation steps five times over, each time with a
newly drawn 10% test portion of the data. On each pass, we calculated

classification accuracy at each time-window, and then averaged across
the 50 analyses to produce a final classification accuracy series for each
subject. We further generated an empirical chance distribution gener-
ated using the exact same classification procedure, only with randomly
shuffled labels for each iteration (i.e., each face epoch randomly la-
belled as either periodic or nonperiodic). Collated across participants,
classification accuracies for the permutated data form a reference dis-
tribution at each time point, the mean of which we compared to the real
classification accuracy using a two-tailed paired t-test (34 time points,
significance criterion = p< .05, Bonferroni corrected). This method is
considered stricter than testing against theoretical chance accuracy of
50% (Bode and Stahl, 2014; Bode et al., 2016).

In a complementary analysis, we used MVPA to ask whether the
temporal unfolding of activity across the scalp elicited by a periodic
face would generalize well to the activity elicited by a nonperiodic face.
Again using pre-notch filtered data (i.e., 12 Hz response preserved),
here we segmented an equal number of face and object instances for
each periodicity condition and participant (−166.66 ms to 500 ms). We
ensured an equal number of both stimulus types by taking only those
object instances appearing exactly 6 cycles before each face. Using the
same classification parameters as described above, we performed i) a
within-condition decoding analysis of faces vs. objects by (classifier
trained using 90% of face and object epochs from the periodic condition,
and tested it on the remaining 10% of epochs from that same condi-
tion), and ii) a cross-condition decoding analysis (classifier on 90% of
the periodic data, and tested it on 10% of the nonperiodic data). The
rationale for cross-condition decoding is as follows – since the classifier
is trained to distinguish neural activity evoked by an object from that
evoked by a temporally predictable face, if it can perform at above-
chance level in classifying neural activity elicited by objects and tem-
porally unpredictable faces, then the response evoked by faces under
predictable and unpredictable conditions must be similar.
Alternatively, if the classifier trained to distinguish periodic face and
object responses cannot generalize to nonperiodic face and object data,
then we may conclude that response evoked by temporally regular and
irregular faces is qualitatively different. In a final step, we compared the
decoding accuracy for these two analyses at each time point using two-
tailed paired t-tests (34 time points, significance criterion: p< .05,
Bonferroni corrected). If cross-condition decoding (i.e., generalizing
from periodic data to nonperiodic data) is significantly worse than
within-condition decoding (i.e., generalizing from periodic data to
periodic data), we may conclude that face periodicity changes the
nature of the face response in FPVS paradigms.

4. Experiment 1 results

4.1. Behavior

Accuracy for the fixation cross color change task was uniformly high
in both conditions, with no significant difference in percent correct
between periodic trials (M = 95.95%, SD = 8.44%) and nonperiodic
trials (M= 96.41%, SD= 6.46%), t(17) = 0.403, p= 0.692, d= 0.09.
There was also no evidence that mean response time (RT) differed be-
tween the periodic (M = 483 ms, SD = 51 ms) and nonperiodic con-
ditions (M = 485 ms, SD = 53 ms), t(17) = 0.648, p = 0.526, d =
0.15.

4.2. Frequency-domain results

4.2.1. Response at the category-selective frequency (0.67 Hz)
To avoid condition or channel related biases, we determined the

range of frequencies for quantification of the category-selective re-
sponse by inspecting the amplitude spectrum averaged across all con-
ditions and all channels. Our z-score inspection procedure revealed
highly significant responses at each of the first 13 consecutive harmo-
nics of 0.67 Hz. When split by condition, all 13 of these harmonics
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remained significant in the periodic condition, but did not meet cri-
terion in the nonperiodic condition. Accordingly, the sum of baseline-
corrected amplitudes across these 13 harmonics was much larger in the
periodic condition (M = 1.162 μV, SD = 0.466 μV) compared to the
nonperiodic condition (M = 0.038 μV, SD = 0.084 μV), t(17) =
−9.64, p< .0001, d= 2.27. This same pattern held when we inspected
the category-selective response as a function of ROI, in that each region
had a strong category-selective response in the periodic condition, but
not the nonperiodic condition (Fig. 2).

We quantified the category-selective response in each ROI/condi-
tion by summing the baseline-corrected amplitude values across the
first 13 harmonics of 0.67 Hz. We subjected these aggregate values to a
repeated measures ANOVA with the factors Periodicity and ROI. Here
we observed a significant interaction, F(2,34) = 23.86, p< .0001, ηG2

= 0.19, the nature of which is clear in Fig. 3. Where ROI clearly
modulated the category-selective response in the periodic condition, it
had no such impact in the nonperiodic condition, since the responses in
this condition were at floor level. Follow-up t-tests (Bonferroni cor-
rected) showed that all three ROIs showed a strong effect of Periodicity
(p< .0001 in all cases), with higher responses in the periodic compared
to nonperiodic conditions (see Fig. 3A). There were also significant
main effects of both Periodicity, F(2,34) = 95.19, p< .0001, ηG

2 =
0.66, and ROI, F(2,34) = 26.81, p< .0001, ηG2 = 0.20, however owing
to the presence of a significant interaction, we did not interpret these
main effects further.

4.2.2. Response at the common frequency (12 Hz)
Collapsing across all conditions and channels, we observed a large

response at the exact frequency of stimulation (i.e., 12 Hz) and its
harmonics 24 Hz and 36 Hz. The response at these frequencies peaked
over medial occipital sites (around Oz, see Fig. 2C), a similar topo-
graphy to that observed in previous studies using this stimulation rate
(e.g., Retter and Rossion, 2016). Since this common response reflects
neural synchronization to the stimulus onset/offset rate, it should not
differ between the periodic and nonperiodic conditions. Indeed, the
global scalp response at these three harmonics of 12 Hz was significant
for both the periodic and nonperiodic conditions (p< .001, one tailed).
Moreover, the sum of baseline-corrected amplitude values at these three
frequencies did not differ between the periodic (M = 0.713 μV, SD =
0.35 μV) and nonperiodic conditions (M = 0.685 μV, SD = 0.28 μV), t
(17) = 0.519, p = 0.610, d = 0.122. Taken together, these results
provide no evidence that participants attended differently to the peri-
odic or nonperiodic stimulation sequences.

Inspected as a function of ROI, all three regions showed a highly
significant response (p< .001, one tailed) at the first three harmonics
of the common frequency (i.e., 12, 24, and 36 Hz). Accordingly, we
summed the response across these frequencies and subjected these va-
lues to a repeated measures ANOVA with the factors Periodicity and
ROI. Here the interaction was not significant, F(1.07,18.26) = 0.41, p
= 0.544, ηG2 = 0.0008, nor was the main effect of Periodicity, F(1,17)
= 0.168, p = 0.687, ηG2 = 0.0007. This suggests that the magnitude of
the common response was comparable across the periodic (M =

Fig. 2. Baseline-corrected amplitude spectra for Expt. 1, shown as
a function of face periodicity for the (A) right and (B) left ROIs. In
both regions, the response at the first 13 harmonics of the cate-
gory-selective frequency (0.67 Hz) was significant (p< .001, one-
tailed) in the periodic condition (red lines). In contrast, there was
no response at any of these harmonics in the nonperiodic condi-
tion for either ROI. Importantly, both conditions yielded a sig-
nificant response at the common frequency (i.e., 12 Hz) in both
lateral ROIs. (C) This response was predominantly centered over
medial occipital sites (around Oz).
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1.33 μV, SD = 1.04 μV) and nonperiodic (M = 1.30 μV, SD = 0.93 μV)
conditions. In contrast, there was a highly significant effect of ROI, F
(1.39,23.70) = 36.39, p< .0001, ηG

2 = 0.48. Posthoc Tukey HSD
contrasts showed the common response was significantly larger in the
central ROI (M = 2.25 μV, SD = 1.08 μV) compared to both the left
ROI (M = 0.66 μV, SD = 0.31 μV), z = −8.42, p< .001, d = 1.720,
and right ROI (M= 1.04 μV, SD= 0.52 μV), z =−6.37, p< .001, d=
1.23. In contrast, the response in the two lateral ROIs did not differ
significantly, z = 2.04, p = 0.102, d = 0.795.

4.3. False-sequencing

Having verified that the periodicity manipulation was effective, we
next turned to quantifying the response elicited by periodic and non-
periodic faces using false-sequencing (see Section 3 for details). As for
the initial frequency-domain analysis, here we inspected the category-
selective response (imposed in these false-sequences at exactly 1 Hz and
harmonics) as well as the common response at 12 Hz and harmonics.

4.3.1. False-sequence response at the category-selective frequency (1 Hz)
Using scalp-averaged false-sequence data, we extracted z-scores for

the imposed face frequency of 1 Hz and its harmonics under 12 Hz. In
both the periodic and nonperiodic false-sequences, all harmonics in all
ROIs met our significance criterion. To compare the magnitude of the
scalp-averaged category-selective response across conditions, we
summed the response across the first 11 harmonics of 1 Hz. A paired t-
test showed there was no significant difference in response magnitude
between the periodic (M = 1.156 μV, SD = 0.515 μV) and nonperiodic
(M = 1.104 μV, SD = 0.542 μV) false-sequence conditions, t(17) =
0.836, p = 0.415, d = 0.197. Next, we extracted the baseline-sub-
tracted amplitude spectra for the periodic and nonperiodic false-se-
quences in each ROI separately. Importantly, z-score inspection re-
vealed a significant response at all 11 harmonics of 1 Hz in all three
ROIs, regardless of whether the false-sequenced data came from the
periodic or nonperiodic condition (Fig. 4).

To quantify the response to periodic and nonperiodic faces, we
summed the baseline-corrected amplitude values at the 11 harmonics
for each condition/ROI pair (Fig. 5A), and subjected these data to a
repeated measures ANOVA with the factors Periodicity and ROI. Here
the interaction between these factors did not approach significance, F
(2,34) = 1.0, p = 0.379, ηG2 = 0.0007, nor did the main effect of

Periodicity, F(1,17) = 2.79, p = 0.113, ηG2 = 0.004. As such, there was
no evidence that category-selective response differed between the
periodic (M = 2.76 μV; SD = 1.55 μV) and nonperiodic false-sequences
(M = 2.58 μV; SD = 1.61 μV). In contrast, there was a significant main
effect of ROI, F(2,34) = 22.87, p< .0001, ηG2 = 0.24. Posthoc Tukey
HSD contrasts indicated the response in the right ROI (M= 3.51 μV, SD
= 1.57 μV) was greater than the response in both the center ROI (M =
1.65 μV; SD = 0.835 μV), z = 6.86, p< .001, d = 1.508, and left ROI
(M= 2.85 μV; SD= 1.61 μV), z= 2.43, p= 0.04, d = 0.612. Also, the
response in the left ROI was greater than that in the center ROI, z =
4.43, p< .001, d = 0.975.

Since we were conscious of the problems associated with drawing
inferences from p-values in support of the null hypothesis (Dienes,
2014), we also calculated a Bayes factor for each model combination
involving the factors Periodicity and ROI. This analysis showed that the
ROI-only model provided the best fit, accounting for our data ap-
proximately 29,620 times better than the null model (i.e., intercept
only). In contrast, the Bayes factor for the Periodicity-only model was
just 0.238, suggesting the null model accounted substantially better for
our data than one including just Periodicity (Jeffreys, 1939/1961).
Furthermore, when comparing our preferred ROI-only model with all
other model combinations, it performed approximately 4.05 times
better than the next best model which included additive effects of both
ROI and Periodicity. Thus, the inclusion of Periodicity did not add suf-
ficient explanatory power to overcome Bayesian penalties for in-
creasing model complexity.

Given the similarity in the magnitude of the response to periodic
and nonperiodic faces, we expected there would be a strong correlation
between the category-selective response magnitudes in the two condi-
tions. Fig. 6 shows this was indeed the case – there was a very high
correlation between the face response for the periodic and nonperiodic
conditions in both the left ROI, r(16) = 0.931, p< .0001, and the right
ROI, r(16) = 0.935, p< .0001. In short, individuals with a strong face-
selective response in the periodic condition also had a strong face-se-
lective response in the nonperiodic condition. Similarly strong corre-
lations were observed for participants’ response significance values
(i.e., z-scores) in both the left ROI, r(16) = 0.829, p< .0001, and the
right ROI, r(16) = 0.710, p = 0.0010.

4.3.2. False-sequence response at the common frequency (12 Hz)
Where the false-sequencing procedure imposes the category-

Fig. 3. The category-selective response in Expt. 1. (A) Sum of baseline-corrected amplitudes at the first 13 harmonics of 0.67 Hz, shown as a function of face periodicity and ROI. All three
ROIs showed a strong category-selective response in the periodic condition, but not the nonperiodic condition. Error bars are within-subjects 95% CIs (overlap should not be interpreted
by eye, see Cumming and Finch, 2005). Significance codes: *** p<.001 (B) Scalp topographies for the category-selective response in the periodic and nonperiodic conditions. Where the
periodic condition was characterized by a strong bilateral occipito-temporal category-selective response, there was no significant category-selective response at any electrode site in the
nonperiodic condition.
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selective response at a specified frequency (i.e., 1 Hz), it should have no
impact on the frequency at which the common response is observed
(i.e., 12 Hz). Indeed, collapsing across all channels and conditions, our
z-score extraction procedure identified a highly significant response for
both false-sequence types at 12 Hz, 24 Hz, and 36 Hz (p< .001, one
tailed). Accordingly, we subjected the sum of baseline-corrected am-
plitudes at these three frequencies for each condition/ROI pair to a
repeated measures ANOVA with the factors Periodicity and ROI. Here
we observed an identical pattern of results to that seen in the original
frequency-domain analysis (see Fig. 5B). That is, the Periodicity × ROI
interaction was not significant, F(2,34) = 1.83, p = 0.176, ηG

2 =
0.0002, nor was the main effect of Periodicity, F(1,17) = 0.877, p =
0.362, ηG2 = 0.0001. Thus, there was no evidence that the magnitude
of the common response differed for periodic (M = 1.44 μV; SD =
1.10 μV) and nonperiodic (M = 1.42 μV; SD = 1.09 μV) false-se-
quences. In contrast, there was a strong main effect of ROI, F
(1.27,21.62) = 32.63, p< .0001. Posthoc Tukey HSD contrasts in-
dicated this was due to significantly lower responses in the left ROI (M
= 0.720 μV; SD = 0.303 μV) and right ROI (M = 1.10 μV; SD =
0.519 μV) compared to the center ROI (M = 2.48 μV; SD = 1.23 μV),
Center-Left: z = −7.90, p< .0001, d = 1.565; Center-Right: z =
−6.19, p< .0001, d = 1.191. In contrast, the common response in the
right and left ROIs was not significantly different, z = 1.71, p = 0.203,
d = 0.790.

4.4. Time-domain results

We further examined the response elicited by periodic and non-
periodic faces in the time-domain. Fig. 7 shows the mean waveforms for
all 128 channels after selectively removing the image presentation
frequency of 12 Hz (see Fig. S1 in Supplemental materials for time-
domain responses in which the 12 Hz frequency is preserved). This

response was remarkably similar in the two periodicity conditions,
notably characterized by the same four distinct spatiotemporal com-
ponents we have reported previously for a different set of faces in an
FPVS-EEG design (Retter and Rossion, 2016).

We compared the response to temporally predictable and un-
predictable faces in each ROI by conducting a paired t-test at each of the
513 samples. Any observed t-value that exceeded the critical cut-offs
given by our conservative permutation procedure (see Section 3) was
considered a significant difference between the periodic and non-
periodic conditions. As can be seen in Fig. 8, no observed t-value in any
ROI approached either this permutation defined cut-off, or even a less
conservative cut-off of p< .01, uncorrected. As such, there was no
evidence to suggest that the response evoked by periodic and non-
periodic faces in the fast periodic visual stream differed meaningfully in
any ROI.

To further assess any difference in the response evoked by periodic
and nonperiodic faces, we also subjected the time-domain data to
MVPA decoding. In the first of these analyses, we trained an SVM
classifier on the spatiotemporal activity patterns associated with peri-
odic and nonperiodic faces in 20 ms increments (−166 ms to 500 ms,
see Section 3 for details). Paired t-tests (n = 34) indicated this classifier
was not able to identify novel, unlabeled face responses as either per-
iodic or nonperiodic significantly better than empirical chance at any
time point following face onset. A complementary question was whe-
ther a classifier trained to distinguish objects and faces in the periodic
condition would generalize well to the same distinction in the non-
periodic condition. To this end, we trained a second SVM classifier on
spatiotemporal patterns of activation elicited by face and object images
in the periodic condition (−166 ms to 500 ms, see Section 3 for de-
tails). We then tested classifier performance using novel data drawn
from either the periodic condition (i.e., within-condition decoding), or
the nonperiodic condition (i.e., cross-condition decoding). Here

Fig. 4. Baseline-subtracted amplitude spectra for the false-se-
quences corresponding to the periodic and nonperiodic condi-
tions, shown here for the (A) right ROI and (B) center ROI. Note
that unlike the original frequency-domain analyses, the false-se-
quences generated from both periodic and nonperiodic sequences
showed a significant response at the category-selective frequency
(i.e., 1 Hz) and its harmonics.
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classifier decoding accuracy for the within-condition analysis acts as a
baseline, reflecting the degree to which the response to faces can be
reliably distinguished from the response to objects. Indeed, within-
condition decoding of face and object responses was significantly
higher than empirical chance from ~ 137 ms to ~ 352 ms following
stimulus onset, with peak decoding at ~ 274 ms post onset (Fig. 9A,
blue lines). Importantly, cross-condition decoding accuracy was also
significantly above empirical chance from ~ 118 ms to ~ 371 ms after
stimulus onset (Fig. 9A, red lines), with peak decoding at exactly the
same time point (~ 274 ms) as in the within-condition decoding ana-
lysis. Moreover, two-tailed paired t-tests (Bonferroni corrected) in-
dicated decoding accuracy was not significantly different in the within-
condition and cross-condition analyses at any time point, suggesting the
response evoked by faces in the periodic condition generalized equally
well to novel nonperiodic data as it did to novel periodic data. Indeed if
anything, cross-condition decoding started slightly earlier and lasted
longer than within-condition decoding, even though there was no sig-
nificant difference in decoding accuracy at any time point.

5. Experiment 1 interim discussion

In Expt. 1 we set out to compare the category-selective response
evoked by faces embedded at temporally predictable or unpredictable
intervals in an FPVS sequence. We found no evidence of a qualitative or
quantitative difference in the response to temporally predictable and
unpredictable faces. In both conditions, the category-selective response
was comprised of the same four spatiotemporal components we have
reported previously for another set of natural face images in FPVS se-
quences (Jacques et al., 2016; Retter and Rossion, 2016): P1-face
(peaking at 145 ms), N1-face (peaking at 220 ms), P2-face (peaking at
290 ms), and P3-face (peaking at 465 ms). Several results suggest that
this ~ 400 ms category-selective response is immune to the temporal
predictability of faces. First, our false-sequencing quantification showed
that the magnitude of the category-selective response was not sensitive
to face periodicity, although it was modulated by ROI (right> left>
center). Moreover, a Bayes factor analysis of response magnitudes in-
dicated that the null model was strongly preferred over one including
face periodicity. Second, permutation test procedures across the 800 ms

Fig. 5. Sum of baseline-corrected amplitudes representing the (A) category-selective response (first 11 harmonics of 1 Hz) and (C) common response (first 3 harmonics of 12 Hz) for the
false-sequence data in Expt. 1. Both the category-selective and common response were strongly modulated by ROI, but were not at all sensitive to face periodicity. Error bars are within-
subjects 95% CIs (overlap should not be interpreted by eye, cf. Cumming, 2005). Significance codes: *** p< .001; ** p<.01; * p<.05. (B) Scalp topographies corresponding to the
category-selective response and (D) common response, shown as a function of face-periodicity.
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Fig. 6. Correlations in category-selective response properties for the periodic and nonperiodic false-sequences A) Response magnitude correlations for the two lateral ROIs (i.e., sum of
baseline-corrected amplitudes across first 11 harmonics of 1 Hz). B) Response significance correlations (i.e., z-scores) for the two lateral ROIs.

Fig. 7. Time-domain representation of the category-
selective response elicited by faces in the periodic
and nonperiodic conditions. (A) Conditional mean
waveforms for all 128 channels plotted as a function
of time from face onset. The image presentation
frequency (12 Hz) has been selectively removed from
these data using an FFT multi-notch filter (see Fig. S1
in Supplemental materials for time-domain responses
preserving the 12 Hz response, also Fig. 4 in Retter
and Rossion, 2016). (B) Scalp topographies for the
periodic and nonperiodic conditions corresponding
to the four spatiotemporal peaks comprising the ca-
tegory-selective response (0.165 s, 0.220 s, 0.290 s,
and 0.465 s). Amplitude scales are fixed for each
condition pair, but vary across time points.
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Fig. 8. Time-domain analysis results for Expt. 1. Left column: Conditional mean amplitude after selectively removing the response at 12 Hz, shown as a function of time from face onset
for the (A) left ROI and (B) right ROI. Right column: The observed t-value for each time point, shown for the (C) left ROI and (D) right ROI. Horizontal dashed lines reflect criterion
significance cut-offs (permutation corrected and uncorrected). No observed t-value at any sample in any ROI approached either criterion cut-off value, suggesting there was no difference
in the response evoked by periodic and nonperiodic faces.

Fig. 9. (A) Face vs. object decoding accuracies for
the within-condition (blue) and the cross-condition
(red) analyses, shown as a function of data type
(actual and permutated). Error bars represent SEM;
asterisks indicate significantly higher decoding ac-
curacy for the actual data compared to the permu-
tated control data (p< .05, Bonferroni corrected).
Note that decoding accuracy was not significantly
different for the within-condition and cross-condi-
tion analyses at any time point (B) z-standardized
absolute feature weights for all 128 channels, aver-
aged across 150–350 ms, shown for the within-con-
dition and cross-condition analyses. In both cases,
the primary sources of face vs. object information
were bilateral occipito-temporal channels. (For in-
terpretation of the references to color in this figure
legend, the reader is referred to the web version of
this article).
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following face onset found no difference in the time-domain response to
periodic and nonperiodic faces in any of our ROIs, nor was a linear
classifier trained on periodic and nonperiodic face responses able to
classify unlabeled responses better than empirical chance. Importantly,
however, a different classifier trained to differentiate the response
evoked by faces and objects in the periodic condition was able to
classify unlabeled face/object responses equally well regardless of
whether they were drawn from the periodic or nonperiodic condition.
This latter result suggests that the category-selective response was
qualitatively similar in the two periodicity conditions. Taken together,
these results suggest that under orthogonal task conditions (as used in
typical studies with this paradigm), the category-selective response in
FPVS designs is not generated, or even modulated, by the temporal
predictability of critical category exemplars.

Why did periodic and nonperiodic faces in our study elicit such si-
milar responses when several existing studies have found that rhythmic
temporal stimulation does indeed modulate perceptual processing
(Cravo et al., 2013; Breska and Deouell, 2014; Morillon et al., 2016)?
One possibility is that temporal expectation effects were masked here
by an overall attentional imbalance between the conditions. Specifi-
cally, if observers paid more attention to the FPVS sequences in one
condition compared to the other, then the category-selective signal in
the better-attended condition could have been boosted so that it
equaled that in the other condition, effectively concealing an effect of
temporal predictability. If that were the case, however, there should be
a commensurate boost to the response at the common frequency, as
“steady-state visual evoked potential” (SSVEP) responses at such high
frequency rates are known to substantially increase with focused se-
lective attention (e.g., Müller et al., 2006). We found no such condi-
tional difference in the 12 Hz response magnitudes, suggesting parti-
cipants attended to sequences equally well regardless of face
periodicity. As such, a difference in attentional allocation seems un-
likely to account for why temporal predictability did not modulate the
category-selective response in our study.

An alternative possibility is that, owing to the high saliency of faces
for the human brain (Hershler and Hochstein, 2005; Crouzet et al.,
2010), participants’ temporal expectations about the predictable onset
of faces were not sufficient to modulate the strong face-selective evoked
response. That the neural response to faces might be robust to mod-
ulation by temporal expectation is not an unreasonable possibility,
considering that effects of factors such as spatial attention on face-
processing have historically been quite difficult to find (Reddy et al.,
2004, 2006; Finkbeiner and Palermo, 2009; Quek and Finkbeiner,
2013). If is indeed the case, then another way to examine whether
temporal predictability drives the category-selective response in FPVS
is to observe the neural response to a violation of temporal expecta-
tions, i.e., when the visual stimulus encountered does not match a pre-
activated template (Rao and Ballard, 1999; Friston, 2005; Kok et al.,
2014). We tested this hypothesis in Experiment 2.

6. Experiment 2

To examine the neural response to a violation of rhythmic temporal
expectations, participants in Expt. 2 viewed rapid continuous sequences
of natural object images with a face embedded as every 12th image
(i.e., at periodic intervals in the sequence). After an initial period of
familiarization, a small fraction (10%) of these highly temporally pre-
dictable faces were replaced with a randomly selected object, a stimulus
we refer to here as a “missing face”. If temporal expectations about
faces contribute to the category-selective signal in FPVS, then non-face
stimuli that violate these expectations (i.e., missing faces) should elicit
a different response than non-face stimuli about which participants
cannot build any temporal expectations. In simple terms, the response
evoked by an object that appears in place of an expected face should
differ in some way from that evoked by the other objects in the se-
quence. If this is indeed the case, a false-sequencing analysis of missing

faces will capture this differential response.
Importantly, our approach here makes no assumptions about the

nature of the differential response to missing faces. It could be, for
example, that objects replacing expected faces evoke a “prediction
error” response, perhaps similar in kind to the mismatch negativity
(MMN; for a review, see Naatanen et al., 2010) that has been associated
in recent theoretical accounts with an error detection signal (Friston,
2005; Garrido et al., 2009; Kimura et al., 2011; Stefanics et al., 2011;
Lieder et al., 2013; Pieszek et al., 2013). On the other hand, perhaps
participants’ temporal expectations will drive a partly face-like selective
response to missing faces, even in the absence of a true face stimulus.
Indeed previous studies have shown that unexpected omissions of vi-
sual stimuli can elicit feature-specific responses in visual cortex (den
Ouden et al., 2009; Kok et al., 2014). Whatever its exact nature, if the
response evoked by objects replacing expected faces differs in any way
from that evoked by other objects in the sequence, it will be reflected in
a significant signal at the imposed frequency in a false-sequence.

7. Experiment 2 methods

7.1. Participants

A different group of 13 individuals (eight females) aged between 19
and 26 years took part in Expt. 2 in exchange for payment. Participation
criteria were the same as Expt. 1; we obtained written informed consent
from all participants prior to testing.

7.2. Procedure

The stimuli, experimental testing set up, and fixation cross task were
identical to those described in Expt. 1. Each trial consisted of a pre-
stimulation period containing only the central fixation cross (2 s), a
fade-in (2 s), the stimulation sequence itself (120 s), and a fade-out
(3 s). As in Expt. 1, the stimulation sequence was a series of randomly
selected object images presented at a periodic rate of 12 Hz. Here we
embedded a natural face image after every 11 object images, yielding a
face periodicity of exactly 1 Hz (i.e., 12 Hz image presentation rate/12
images). The critical manipulation was the inclusion of “missing faces”
within each sequence, achieved by replacing 10% of the periodic faces
with a randomly selected object image (Fig. 10).1 The first missing face
could occur only after participants had viewed at least 10 normal face
presentation cycles (i.e., 10 s of familiarization), after which missing
faces were separated by a variable delay of 6–15 normal face pre-
sentation cycles (i.e., 6–15 s). There were 10 sequences, each con-
taining approximately 108 real faces and up to 12 missing face in-
stances, so that the conditions were optimal for temporal expectation.

7.3. EEG analysis

7.3.1. EEG pre-processing
We excluded data from two female participants whose EEG trace on

initial inspection contained excessive artefact that unduly affected time-
domain visualization. As in the case of the participants removed in
Expt. 1, both individuals nevertheless showed a significant response at
the face periodicity and several harmonics (1 Hz). All remaining pre-
processing steps were identical to those implemented in Expt. 1, save
that here we segmented longer epochs to correspond to the 120 s se-
quence.

7.3.2. Frequency-domain analysis
The goal of the initial frequency analysis was to verify that FPVS

1 Note that unlike some previous studies (den Ouden et al., 2009; Kok et al., 2014) in
which a stimulus omission means there is no visual input at all, here the expected sti-
mulus (a face) is replaced with an unexpected stimulus (an object).
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sequences in which 10% of periodic faces were removed nevertheless
still evoked a category-selective response (i.e., response at 1 Hz). To
this end, we cropped the EEG recording for each sequence to a 119.02 s
epoch containing exactly 119 face presentation cycles, and subjected
each participants average epoch to a Fast Fourier Transformation (FFT).
The frequency resolution of the resulting normalized amplitude spectra
was 0.0084 Hz (the inverse of the sequence duration, i.e., 1/119.02).
We identified significant responses at the frequencies of interest by
pooling the amplitude spectra across channels and computing a z-score
at each frequency bin (significance criterion = z>3.1, or p< .001,
one-tailed, i.e., signal> noise), using the same parameters as applied
for Expt. 1. We then quantified the response at the relevant frequencies
in three ROIs defined using the same procedures as for Expt. 1 (i.e., by
summing baseline-corrected amplitudes). This procedure yielded left
and right occipito-temporal ROIs that were identical to those of Expt. 1
(left: P9, PO7, PO9, & PO11; right: P10, PO8, PO10, & PO12), and a
near-identical central ROI (O2, POOz, PO4h, POO6).2

7.3.3. False-sequencing analysis
Our goal here was to quantify and compare the response to real and

“missing” faces using the same false-sequencing procedure described
for Expt. 1. Epochs were 1000 ms long, lasting from 500 ms before to
500 ms after each missing face instance, resulting in ~ 12 segments that
we sequenced, aligned, linearly de-trended, and cropped to exactly
11 s. We repeated this same procedure to produce false-sequences
corresponding to each real face occurrence immediately preceding a
missing face. This ensured an equal number of real and missing faces in
the false-sequencing analysis, in which the imposed critical stimulus
periodicity was exactly 1 Hz. We averaged the resulting false-sequences
by participants before applying an FFT. The baseline correction was in
Expt. 1, save that owing to the lower frequency resolution here (i.e., 1/
11 = 0.0113 Hz), the noise range comprised 18 neighboring frequency
bins (excluding the immediately adjacent bins and the local maximum
and minimum amplitude bins).

7.3.4. Time-domain analysis
We inspected the EEG waveform data time-locked to a comparable

number of missing faces and real faces. Here we applied a zero phase-
shift Butterworth low-pass filter (4th order, 30 Hz cut-off) to the con-
tinuous EEG trace, before cropping each sequence to an integer number
of 12 Hz cycles. We applied an FFT multi-notch filter (Hanning window,
width = 0.05 Hz) to selectively remove the response at the common
frequency of 12 Hz, and three of its harmonics (24 Hz, 36 Hz, and
48 Hz). We then segmented an epoch lasting from −200 ms to 750 ms
around i) each missing face in the sequence, and ii) each real face in-
stance immediately preceding a missing face. We baseline-corrected
each epoch to the average of the 166 ms preceding stimulus onset, and
averaged the resulting ~ 120 epochs of each type to create conditional
means. A two-tailed paired t-test between the condition of interest and a
baseline of zero at each time point (n = 564) was computed to assess
the presence of a category-selective response for each condition. As in
Expt. 1, we inspected the obtained t-values relative to two significance
criteria (p< .01 uncorrected, and p< .05, corrected for multiple
comparisons). We obtained the second, more conservative criterion
using the same permutation procedure described for Expt. 1 (2048
permutations implemented across 564 time points, for a total of 1.16
million comparisons).

8. Experiment 2 results

8.1. Behavior

Detection accuracy for the fixation cross color change task was near
ceiling at 95.85% (SD = 6.02%). The mean response time (RT) on
correct trials was 502 ms (SD = 42 ms).

8.2. Frequency-domain results

8.2.1. Response at the category-selective frequency (1 Hz)
Z-score inspection at the scalp-average level revealed a significant

response at each of the first 18 harmonics of 1 Hz. Thus, despite the
inclusion of missing faces, the stimulation sequences nevertheless still
evoked a strong category-selective response. A repeated measures
ANOVA indicated that the sum of these 18 harmonics (excluding the

Fig. 10. Schematic representation of the stimulation
sequence for Expt. 2. Natural object images appeared
at a periodic rate of 12 Hz, with a face embedded as
every 12th image (i.e., face periodicity = 1 Hz).
Within each sequence, 10% of periodic faces were
replaced by a randomly selected object image, re-
sulting in a “missing face” for the observer. 6–15
normal periodic face cycles could occur between
missing face instances. As in Expt. 1, the task was to
monitor a central fixation cross which overlaid the
images for changes of color.

2 For completeness’ sake we also inspected the common response magnitude in a
central ROI identical to that used in Expt. 1 (i.e., averaged over POOz, Oz, POO6, PO4h),
and found it to be just 0.0055 μV lower than that given by the central ROI we used in the
main analyses (i.e., averaged over POOz, O2, POO6, PO4h).
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12th harmonic, i.e., the 12 Hz common frequency) varied significantly
with ROI, F(2,20) = 10.86, p< .001, ηG2 = 0.19. Posthoc Tukey HSD
contrasts indicated that the right (M = 3.45; SD = 1.76) and left ROIs
(M = 2.74; SD = 1.71) exhibited a significantly larger category-se-
lective response than the central ROI (M = 1.76; SD = 0.904) (right vs.
center: z = 4.87, p< .001, d = 1.164; left vs. center: z = 2.82, p =
0.013, d = 0.756). However, these two lateral regions did not differ
significantly from one another, z = 2.04, p = 0.102, d = 0.927.

8.2.2. Response at the common frequency (12 Hz)
Again collapsing across all channels, there was also a highly sig-

nificant response at the first five harmonics of the common frequency
(i.e., 12, 24, 36, 48, & 60 Hz). We examined the sum of baseline-sub-
tracted amplitude values across these five harmonics in each of pre-
defined ROI. A repeated measures ANOVA here revealed a highly sig-
nificant effect of ROI on the magnitude of the common response, F
(1.16, 11.62) = 25.02, p< .001, ηG2 = 0.55. As was the case in Expt. 1,
posthoc Tukey HSD contrasts showed this response was significantly
larger in the central ROI (M = 2.13 μV, SD = 0.978 μV) compared to
both the left ROI (M = 0.562 μV, SD = 0.246 μV), z = −7.09,
p< .0001, d= 1.522, and right ROI (M= 0.926 μV, SD= 0.426 μV), z
= −5.44, p< .0001, d = 1.679. In contrast, there was no significant
difference in the magnitude of the common response between the left
and right ROIs, z = 1.65, p = 0.224, d = 0.814.

8.3. False-sequencing

The false-sequencing procedure generated 12 Hz sequences con-
taining either a “missing face” or real face at an imposed periodicity of
1 Hz. We inspected the response at both the category-selective fre-
quency and common frequency for these two sequence types.

8.3.1. False-sequence response at the category-selective frequency (1 Hz)
Pooling across all scalp channels and conditions, we identified sig-

nificant responses (p< .001, one tailed) at the 4th–8th harmonic of the
imposed periodicity at 1 Hz. As such, we summed the baseline-cor-
rected amplitude values for each condition across the initial eight
harmonics of 1 Hz.3 Averaged across the whole scalp, this aggregated
category-selective response was significantly larger for the real face
sequences (M = 0.526 μV, SD = 0.391 μV) compared to the missing
face sequences (M = −0.171 μV, SD = 0.150 μV), t(10) = 5.60,
p< .001, d = 1.688).

Taking the aggregated category-selective response in each ROI, a re-
peated measures ANOVA with the factors Sequence Type and ROI revealed a
significant interaction, F(2,20) = 4.59, p = 0.023, ηG2 = 0.07, the nature
of which is clear in Fig. 11A. As in Expt. 1, ROI significantly modulated the
category-selective response in the real face condition, but not in the missing
face condition (since responses in the latter were at floor level). up pairwise
t-tests indicated there was a significant effect of Sequence Type in each ROI
(all Bonferroni adjusted p values<0.05). There was also a significant main
effect of Sequence Type, F(1,10) = 33.42, p =<0.001, ηG2 = 0.48, and
ROI, F(2,20) = 5.54, p =<0.05, ηG2 = 0.10.

Since we were primarily interested in asking whether the missing
faces generated any category-selective response at all, we also inspected
the 95% confidence interval (CI) around the mean category-selective
response for missing faces, and noted that it included zero (−0.493 to
0.148) where the 95% CI for real faces did not 1.170–1.812). This
would suggest that real faces gave rise to a category-selective (i.e.,
differential) response (M = 1.49 μV; SD = 1.29 μV), where missing
faces did not (M = −0.172 μV; SD = 0.389 μV) – a pattern that held
for each participant when considered at the individual level (see Fig. S2
in Supplemental materials).

8.3.2. False-sequence response at the common frequency (12 Hz)
Again pooling across all channels and conditions, z-score inspection

revealed a significant response at each of the first four harmonics of the
common frequency (i.e., 12 Hz). At the level of ROI, a repeated mea-
sures ANOVA with the factors Sequence Type and ROI revealed that
there was no interaction between these factors, F(2,20) = 0.876, p =
0.432, ηG2 = 0.001, nor was there an effect of Sequence Type, F(1,10) =
2.98, p = 0.115, ηG2 = 0.003. As can be seen in Fig. 11C, the magni-
tude of the common response was comparable for missing face se-
quences (M = 1.16 μV; SD = 0.918 μV) and real face sequences (M =
1.10 μV; SD = 0.926 μV). In contrast, there was a strong main effect of
ROI, F(1.16,11.62) = 23.65, p< .001, ηG2 = 0.52. Posthoc Tukey HSD
contrasts showed that the common response for the central ROI (M =
2.03 μV; SD = 0.973 μV) was significantly larger than both the left ROI
(M = 0.479 μV; SD = 0.270 μV), z = −6.95, p< .0001, d = 1.509,
and right ROI (M = 0.884 μV; SD = 0.464 μV), z = −5.14, p< .0001,
d = 1.682. However, there was no difference between the two lateral
ROIs, z = 1.82, p = 0.164, d = 0.817.

8.4. Time-domain results

Fig. 12 shows the global response in the time-domain to missing and
real faces, both before and after selectively removing the common re-
sponse at 12 Hz. Where the category-selective response for real faces was
comprised of the same four spatiotemporal components as in Expt. 1
(Retter and Rossion, 2016), the category-selective response to missing
faces was minimal. That is, the response evoked by missing faces appeared
to be almost entirely captured by the common response at 12 Hz.

For each condition separately, we assessed the presence of a cate-
gory-selective response in each ROI by comparing the response with a
zero baseline in a series of two-tailed paired t-tests. As can be seen in
Fig. 13, where the components evoked by real faces met our imposed
significance criteria (see Section 7), the response to missing faces did
not approach either cut-off in any ROI. However, while the averaged
response of the four channels in the right ROI was not significantly
different from a zero baseline, an inspection of Fig. 12A suggests there
might be a small increase on several occipito-temporal channels in the
missing face condition around 300 ms. Given that this “blip” temporally
coincides with the P3-face component, for interests’ sake we further
inspected the response on individual channels. One channel, PO12, met
our less conservative significance criterion (i.e., p< .01, uncorrected)
for a brief duration of 13.67 ms around 277 ms. Thus, on balance these
time-domain analyses suggest that missing faces did not evoke an
identifiable differential response. In other words, there was no evidence
that objects replacing expected faces were processed differently to any
other object in the rapid sequence.

9. Experiment 2 interim discussion

In Expt. 2 we examined whether rare omissions of highly temporally
predictable faces in an FPVS sequence would evoke an expectation re-
lated response. If so, then the response to object images that replace
expected faces (so-called “missing faces”) should differ in some way
from the response evoked by other object images in the sequence. The
results here do not support this suggestion. Frequency-domain quanti-
fication of the differential response showed that where real faces eli-
cited a strong category-selective response, the analogous response to
missing faces was at floor level, i.e., not significantly greater than zero.
Moreover, time-domain analysis showed that the evoked response to
missing faces was entirely captured by the 12 Hz common response.
This suggests that the response to objects replacing expected faces was
no different to that of any other object in the sequence. Based on these
results, we conclude that temporal expectation induced by the peri-
odicity of critical stimuli in FPVS sequences is not sufficient to generate
the category-selective response, at least when participants are engaged
in an orthogonal task.

3 Although the first three harmonics of 1 Hz did not reach our significance criterion, we
had no a priori reason to exclude the signal on these harmonics from our quantification.
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As a secondary point, it is worth noting that even though the overall
periodicity of the faces in these sequences was degraded (i.e., 10% of
periodic faces replaced by objects), our initial frequency-domain ana-
lysis of the intact sequences still revealed a clear category-selective
response. This is an encouraging finding, since it suggests the category-
selective response measured with rapid continuous visual stimulation
designs can tolerate imperfection in the periodicity of critical category
exemplars (the exact amount of degradation remains an empirical
question). This advantage, along with the high signal-to-noise ratio
offered by the technique, makes FPVS an ideal method for testing
participants who may have particularly noisy EEG signals or difficulty
following instructions about tasks or blinks, such as young infants (see
de Heering and Rossion, 2015) or clinical populations.

10. General discussion

The goal of our study was to establish whether the category-selec-
tive signal elicited by the periodic appearance of critical category ex-
emplars in a dynamic visual stimulation stream is generated or

modulated by participants’ temporal expectations about those ex-
emplars. To this end, we examined i) whether temporally predictable
and unpredictable faces embedded in a continuous stream of objects
elicit different neural responses (Expt. 1), and ii) whether there is an
identifiable neural response to a violation of the faces’ temporal pre-
dictability (Expt. 2).

The research here establishes several important results. First, the
category-selective response for faces embedded in a dynamic stream of
objects does not vary as a function of the faces’ temporal predictability
when participants are engaged in an orthogonal task. In Expt. 1, fre-
quency- and time-domain analyses indicated that both the magnitude of
the category-selective response and its spatiotemporal unfolding are
entirely comparable for periodic and nonperiodic faces. That the re-
sponse to both face types was indistinguishable at the scalp level speaks
directly to the concern that the category-selective response in FPVS
designs may be driven in part by the temporal predictability of the
critical stimuli. Our results emphatically suggest that this is not the
case. Importantly, since even the relatively late category-selective
components were insensitive to temporal predictability (e.g., the P3-

Fig. 11. Sum of baseline-corrected amplitudes for the false-sequence data in Expt. 2. (A) The category-selective response was strongly modulated by both ROI and false-sequence type. In
all ROIs, real faces generated a clear differential response, where “missing faces” did not. (C) In contrast, the common response did not differ with false-sequence type, but was strongly
modulated by ROI. Significance codes: **** p< .0001; *** p< .001; ** p< .01; * p< .05. Error bars are within-subjects 95% CIs, overlap should not be interpreted by eye (Cumming
and Finch, 2005). (B)& (D) scalp topographies corresponding to the category-selective and common responses, shown for real and missing faces.
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face, peaking around 300 ms), our data imply that the entire differential
response to faces in FPVS designs reflects a categorization response,
rather than a response due to temporal expectancy. A second major
finding is that rare omissions of highly temporally predictable faces do
not evoke a differential response. In Expt. 2, we showed that the re-
sponse evoked by object images that unexpectedly replace temporally
predictable faces is no different to that evoked by other object images
about which participants have no temporal expectations. In other
words, any temporal expectation induced by the periodicity of faces
was not sufficient to generate a category-selective response in the ab-
sence of a true face stimulus.

That temporal predictability did not appear to modulate or drive the
category-selective signal in our experiments is somewhat surprising
given the wealth of temporal expectation effects documented in the
literature (Ariga and Yokosawa, 2008; Mathewson et al., 2010; Kok
et al., 2012a, 2014; Rohenkohl et al., 2012; Cravo et al., 2013; Breska
and Deouell, 2014; Morillon et al., 2016). Before considering possible
explanations for these divergent findings, however, we must first rule
out the possibility that the lack of temporal periodicity effects here is
merely Type II error. We do not believe this to be the case, as in Expt. 1,
we know from the initial frequency analysis that an N of 18 yields
sufficient power to detect differences between conditions (see Fig. 3).
Moreover, Bayes factor analysis of these data indicated the null model
accounted substantially better for the data than a model including face
periodicity. Note that a floor effect does not account for the lack of

difference between conditions either – there was a highly significant
face categorization response in both conditions in every individual
participant's data. In Expt. 2, the minimal response to missing faces was
present not only at the group level, but also for each individual parti-
cipant (Fig. S2 in Supplemental materials). As such, it is not the case
that we did not have enough power to detect a significant response
signal for missing faces at the group level. Rather, this signal was simply
not present for any participant. Overall, given the convergent results of
our several analysis methods, as well as the additional precautions we
have taken regarding drawing inferences from p-values in support of the
null hypothesis (Dienes, 2014), we believe the null results we report
here can be relied upon.

As suggested above, one possibility is that the periodicity of faces in
our two experiments did elicit temporal expectations in participants,
but that the high saliency of face stimuli for the visual system (Hershler
and Hochstein, 2005; Crouzet et al., 2010) results in an evoked re-
sponse that is simply too robust to be modulated by temporal ex-
pectation. On this possibility, if we had used a less potent critical sti-
mulus category (e.g., pictures of houses or body parts, Jacques et al.,
2016), or degraded/ambiguous face stimuli (Zhang et al., 2008), we
might well have observed an effect of temporal expectation. While we
cannot rule out this ‘robust-to-expectation-effects’ explanation on the
basis of the current data (as the critical category was faces in both
experiments), it is somewhat undermined by the fact that other forms of
top-down expectation (e.g., category level expectation, such as

Fig. 12. Time-domain responses in Expt. 2. (A) Conditional mean waveforms time-locked to missing face (top row) and real face (bottom row) onset. Left column: the evoked response
before selectively removing the 12 Hz response common to both faces and objects. Right column: The differential response to faces after removing the 12 Hz response. Only real faces gave
rise to a clear differential (i.e., face-selective) response, comprised of the same four spatiotemporal components seen in Expt. 1. (B) Group-level scalp topographies for missing and real
faces corresponding to the four components of the face response (160 ms, 220 ms, 288 ms, & 450 ms). Amplitude scales are fixed for condition pairs, but vary across time points.

G.L. Quek, B. Rossion Neuropsychologia 104 (2017) 182–200

197



expecting to see a face instead of a house), have been shown to be
perfectly capable of modulating the neural response to face stimuli
(Gregory, 1970; Esterman and Yantis, 2009; Puri et al., 2009; Egner
et al., 2010; Jiang et al., 2015).

An alternative possibility is that face periodicity in our sequences
simply did not engender temporal expectations about faces in our
participants. Although a number of studies have shown that rhythmic
visual stimulation can induce temporal expectations in observers (Ariga
and Yokosawa, 2008; Mathewson et al., 2010; Rohenkohl et al., 2012;
Cravo et al., 2013; Breska and Deouell, 2014), in our case the percep-
tual load imposed by the dynamic visual stimulation may have under-
mined participants’ ability to form reliable and accurate temporal ex-
pectations about the faces in the sequences. The FPVS approach places
the visual system under significant strain – observers see a very large
number of images (e.g., 720 images in a single minute) at an extremely
high frequency of presentation (e.g., 12 images per second), with each
image viewed for just 83.33 ms before being replaced. Within this dy-
namic and rapid stimulation, the critical periodicity participants must

detect is in fact an embedded periodicity (i.e., the face presentation
frequency at 0.67 Hz, not the common frequency at 12 Hz). Where it is
perhaps relatively easy for participants to perceive the rhythmic ‘beat’
(Rohenkohl et al., 2012) of the common frequency as each new image
appears, it may be comparatively harder to perceive the beat of the
embedded face instances. This remains an open question at this stage,
as we are not aware of any study thus far that has examined temporal
expectation effects for embedded visual periodicities. Further to this
point, we note that the face stimuli used here were not typical, full
frontal exemplars of uniform size, but by design varied widely in terms
of viewing angle, face size, lighting, background, etc. As such, any
temporal expectations about these faces must necessarily rely on a high-
level, category-based stimulus template, rather than one based on low-
level commonalities between face exemplars. These temporal and
image-based complexities distinguish our study from existing rhythmic
visual stimulation studies, which have typically used slower presenta-
tion rates and/or shorter, less complex visual stimulations (Mathewson
et al., 2010; Rohenkohl et al., 2012; Cravo et al., 2013; Breska and

Fig. 13. Time-domain analysis for the left and right ROIs in Expt. 2. Left Column: (A) Conditional mean amplitude in the left ROI after selectively removing the 12 Hz response, shown as
a function of time from stimulus onset (vertical dashed line). (B) Left ROI analysis of the ‘real face’ response (real face vs. baseline), showing observed t-values for each time point. (C) Left
ROI analysis of the missing face response (missing face vs. baseline), showing observed t-values for each time point. (D), (E), & (F) are the same panels for the right ROI. Horizontal dashed
lines are significance criteria (long dash = p< .05, permutation corrected; short dash = p< .01, uncorrected). In both ROIs, only observed t-values in the real face condition met either
criterion for significance, suggesting the response in the missing face condition did not differ from baseline at any point following stimulus onset.

G.L. Quek, B. Rossion Neuropsychologia 104 (2017) 182–200

198



Deouell, 2014). Where periodicity appears to engender temporal ex-
pectations under these simplified conditions, we have shown here that
it does not do so when visual stimulation is complex (i.e., highly vari-
able natural images), dynamic, and continuous – conditions which
emulate the processing strain imposed on the visual system by real
world vision (e.g., when a moving observer makes eye-movements in
the context of a dynamic visual scene).

Still another consideration is whether the impact of temporal pre-
dictability on stimulus processing might vary with the task-relevance of
that stimulus. To the best of our knowledge, previous studies that have
demonstrated modulation of perceptual processing by rhythmic tem-
poral expectations have used behaviorally relevant target items (Ariga
and Yokosawa, 2008; Rohenkohl et al., 2012; Cravo et al., 2013; Breska
and Deouell, 2014; Morillon et al., 2016). That is, the stimulus for
which an effect of temporal expectation was observed was one that
participants actually responded to in some way. In contrast, the faces in
our experiments were never task-relevant for participants, who we in-
structed to monitor the central fixation cross for color changes. Note
that we are not suggesting that task-irrelevant stimuli cannot engender
temporal expectations in participants – indeed, several studies have
already documented this (e.g., den Ouden et al., 2009; Alink et al.,
2010) – but that perhaps in order for temporal expectations to facilitate
perceptual processing, the critical stimuli must be attended to in some
way. In the present experiments, we deliberately imposed an ortho-
gonal task on the stimulation sequence, so as not to confound ex-
pectation and attention related effects (cf. Summerfield and Egner,
2009). Indeed, the FPVS approach has most often been employed this
way to yield an implicit index of perceptual categorization (e.g.,
Rossion et al., 2015; Retter and Rossion, 2016). However, if partici-
pants were required to judge some aspect of periodic faces explicitly
(e.g., “respond when you see a female face”), we might well have ob-
served an effect of temporal predictability on the category-selective
response (Kok et al., 2012b).

Taken together, the findings here support the claim that the index of
perceptual categorization yielded by dynamic visual stimulation ap-
proaches (e.g., Rossion et al., 2015; Jonas and Rossion, 2016; Retter
and Rossion, 2016) is immune to the temporal predictability. Im-
portantly, this finding not only validates the use of FPVS as an objective
tool with which to operationalize perceptual categorization processes,
but also has important implications for understanding human percep-
tual categorization in a rapidly changing (i.e., dynamic) visual scene.
Furthermore, these data undermine a predictive coding interpretation
of category-change detection in the human brain (Rao and Ballard,
1999; Friston, 2005; Alink et al., 2010; Kok et al., 2012a), in that
temporally predictable faces in our study were not associated with re-
duced neural activity (due to their ‘redundancy’), or a sharpened sen-
sory representation (due to noise suppression) (Kok et al., 2012a). That
top-down temporal expectations do not facilitate sensory processing in
the context of a dynamic continuous scene points to the interesting
possibility that predictive mechanisms are not automatic, but rather
subject to the rate at which visual stimulation changes. In this way, this
work highlights a broader need to test theoretical predictions under
more ecologically relevant conditions, which place the visual system
under a similar strain to that imposed by natural vision.

11. Conclusion

The research reported here establishes that category-selective
neural responses elicited in a dynamic visual stream are immune to the
temporal predictability of the critical category exemplars, at least when
i) visual stimuli are highly variable in viewing conditions, and ii) par-
ticipants are engaged in an orthogonal task that does not explicitly
highlight the temporal predictability of the critical stimulus. Under
such conditions, the category-selective response yielded by these de-
signs can be taken as a relatively pure index of perceptual categoriza-
tion.
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