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Abstract
Defining the neural basis of perceptual categorization in a rapidly changing natural environment with low-temporal resolu-
tion methods such as functional magnetic resonance imaging (fMRI) is challenging. Here, we present a novel fast periodic 
stimulation (FPS)-fMRI approach to define face-selective brain regions with natural images. Human observers are presented 
with a dynamic stream of widely variable natural object images alternating at a fast rate (6 images/s). Every 9 s, a short 
burst of variable face images contrasting with object images in pairs induces an objective face-selective neural response at 
0.111 Hz. A model-free Fourier analysis achieves a twofold increase in signal-to-noise ratio compared to a conventional 
block-design approach with identical stimuli and scanning duration, allowing to derive a comprehensive map of face-selective 
areas in the ventral occipito-temporal cortex, including the anterior temporal lobe (ATL), in all individual brains. Critically, 
periodicity of the desired category contrast and random variability among widely diverse images effectively eliminates the 
contribution of low-level visual cues, and lead to the highest values (80–90%) of test–retest reliability in the spatial activation 
map yet reported in imaging higher level visual functions. FPS-fMRI opens a new avenue for understanding brain function 
with low-temporal resolution methods.
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Introduction

A fundamental goal of neuroscience is to build a compre-
hensive map of the human brain, i.e., to define the structure 
and function of each of its regions and networks (Brodmann 
1909; Amunts and Zilles 2015; Glasser et al. 2016). The 
advent of the non-invasive, spatially resolved functional 
magnetic resonance imaging (fMRI) technique in the early 

1990s (Ogawa et al. 1990, 1992) has provided an unprec-
edented opportunity to reach this goal, and this technique 
has now become a major player in Systems and Cognitive 
Neuroscience. Starting with visual perception, the dominant 
modality in primates, occupying a substantial fraction of 
the cortex, researchers have used fMRI to define retinotopic 
maps (Sereno et al. 1995; Engel et al. 1997; Wandell and 
Winawer 2011) as well as areas specifically involved in pro-
cessing low-level visual attributes such as color or motion 
(e.g., McKeefry and Zeki 1997; Tootell et al. 1995; Winawer 
and Withoft 2015). More recently, this approach has been 
extended to build maps of higher level areas responding dif-
ferentially to different categories of the visual world, such as 
faces, places and body parts (as reviewed by Grill-Spector 
and Weiner 2014), and to decode other categories as distrib-
uted patterns of variable neural activity across smaller brain 
volumes (i.e., voxels; e.g., Haxby et al. 2001; Kriegeskorte 
et al. 2007; Huth et al. 2012).

With a low-temporal resolution method such as fMRI 
measuring neural activity indirectly (i.e., the blood oxy-
genation level-dependent, BOLD, response), identifying 
category-selective brain regions requires presenting visual 
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stimuli belonging to different categories at a relatively slow 
rate, i.e., separated by several seconds, to isolate neural 
activity to each category. Most often though, stimuli from 
the same condition/category are presented consecutively 
for 10–20 s, i.e., a block design, which typically provides 
the largest BOLD response and contrast between condi-
tions (Dale 1999). The estimated BOLD response during 
the whole block with respect to a baseline measure (activity 
to a uniform visual field, or the average activity across all 
blocks of stimuli) is then considered as reflecting the brain’s 
response to this category (e.g., Aguirre and D’Esposito 
1999; Weiner and Grill-Spector 2010). Then, by subtracting 
neural responses to different categories from one another, 
category-selective maps, either of regions or patterns of 
voxels, can be identified (Grill-Spector and Weiner 2014; 
Kanwisher 2017).

Although this category-selective localizer approach pro-
vides important information regarding human brain cartog-
raphy, it also relies on a number of unwarranted assump-
tions, such as pure insertion (i.e., that adding a process 
to a set of cognitive processes does not affect these latter 
processes, Friston et al. 1996; D’Esposito 2010) and uni-
formity of the modeled hemodynamic response function 
(HRF) for different brain regions (Boynton et al. 1996; 
Buxton et al. 2004). Most importantly, this approach does 
not consider three key aspects of perceptual categorization 
when designing stimulation parameters. First, perceptual 
categorization processes can occur at a high speed in a con-
tinuous or quasi-continuous stimulation mode in the visual 
world (Potter 2012; Retter and Rossion 2016; Thorpe et al. 
1996). This high speed implies that high-level visual areas 
could be stimulated at faster rates than traditionally used in 
fMRI designs (Gentile and Rossion 2014), with an optimal 
stimulation rate taking into consideration both the minimal 
stimulus duration to elicit a full categorization process and 
the duration of this process for setting stimulus onset asyn-
chrony (see Retter and Rossion 2016). Second, block designs 
in fMRI do not take into account category-specific adapta-
tion (e.g., Kovacs 2005) that occurs when exemplars of the 
same category are presented consecutively. Rather, within a 
block, direct comparisons (i.e., contrasts) between categories 
should be measured to increase sensitivity. The third and 
final aspect concerns the contribution of low-level visual 
cues such as differences in global contrast or amplitude spec-
trum to perceptual categorization (VanRullen 2006; Crouzet 
and Thorpe 2011; Andrews et al. 2015). Studies measuring 
neural responses of perceptual categorization often ignore 
this issue entirely (e.g., see the review of Berman et al. 2010 
on face localizers), or take two extreme positions: on the 
one hand, using ecological stimuli that lead to large but par-
tially unspecific differential responses (e.g., the “dynamic 
face localizer approach”, Fox et al. 2009) or, on the other 
hand, using stimuli from different categories normalized for 

low-level visual cues at the expense of ecological validity 
(e.g., grayscale segmented full frontal face and house stim-
uli equalized for power spectra, e.g., Rousselet et al. 2008). 
These unwarranted assumptions and suboptimal stimulation 
parameters should add extra noise to the existing physiologi-
cal, thermal, and scanner noises (Kruger and Glover 2001), 
lowering the signal-to-noise ratio (SNR) of fMRI measure-
ment. As a result, extensive trial averaging is often required 
to achieve effective signal detection (Murphy et al. 2007) 
and category-selective responses may be biased by low-level 
image statistics (Andrews et al. 2015). For these reasons, 
fMRI studies in cognitive neuroscience may sometimes suf-
fer from low sensitivity, specificity and reliability (Bennet 
and Miller 2010).

Here, we take into account these factors to introduce 
an effective approach to localize category-selective neural 
responses in the human brain. We use this approach as a 
model to measure brain function with fMRI or low-tempo-
ral resolution methods in general. In this approach, visual 
stimuli are presented at a fast presentation rate (6 images/s, 
6 Hz) allowing one fixation by image—largely sufficient for 
perceptual categorization (Potter 2012; Retter and Rossion 
2016; Thorpe et al. 1996)—throughout the entire recording 
of neural activity (Fig. 1a; Supplemental Movie S1). This 
dynamic stimulation sets a high baseline level of activity 
in low-level visual areas as well as in non-category-selec-
tive high-level visual areas. Then, we introduce transient 
switches from non-target object categories to a target cat-
egory, here faces (Fig. 1a, red bins, and Fig. 1b for example 
images). In populations of neurons responding selectively 
to faces, such transient switches elicit differential neural 
responses that directly reflect category selectivity because 
they contrast with the continuous stimulation stream of non-
face objects. Hence, contrast is maximized, and inference 
regarding category selectivity can be made without post hoc 
subtraction. The transient switches to faces are grouped in 
short bursts containing multiple faces to increase the dura-
tion of the BOLD response and consequently improve SNR 
in fMRI. Critically, within a burst, faces appear only every 
two stimuli, i.e., alternating with a randomly selected object 
(Fig. 1b). This way, category-specific adaptation is reduced 
during the burst, multiple contrasts are measured within a 
burst, and the temporal separation between two faces is more 
than 300 ms, leaving sufficient time for occurrence of the 
bulk of a face-selective neural response (Retter and Rossion 
2016). Since the bursts appear at a fixed frequency during a 
run, the magnitude of the differential neural responses can 
be measured without HRF modeling, i.e., as the Fourier 
amplitude of the frequency of the bursts (e.g., Bandettini 
et al. 1993; Engel et al. 1997; Puce et al. 1995). This model-
free approach, therefore, allows fair comparisons across 
brain regions and individuals and has high SNR, since it is 
only affected by noise occurring at the exact same frequency 
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of the bursts, not broadband frequency noise (Regan 1989). 
Finally, a wide variety of natural images, which have com-
plex statistical properties (Simoncelli and Olshausen 2001), 
ensure that the succeeding images represent many differ-
ent types of low-level contrasts, minimizing the contribu-
tion of specific low-level visual cues to category-selective 
responses occurring at the same periodic frequency (Rossion 
et al. 2015). At the same time, widely variable images of 
faces are used to ensure that a category-selective response 
is not tied to specific exemplars (i.e., is generalized). Based 
on these unique features, we name the current approach as a 
fast periodic stimulation (FPS)-fMRI paradigm.

We designed a functional “face localizer” based on the 
above-mentioned principles. After Kanwisher and colleagues 
(1997), face localizers are arguably the most widely used 
approach to define category selectivity in neuroimaging, both 
in human and non-human primates (Kanwisher 2017; Tsao 
et al. 2008). In humans, the representation of faces differs from 
other object categories at the level of a large number of distrib-
uted regions, or functional clusters, which have been reported 
by numerous studies primarily not only in the ventral occipito-
temporal cortex (VOTC), but also in the superior temporal sul-
cus (STS), more recently in the ventral anterior temporal lobe 
(VATL), and to a lesser extent in the parietal and frontal lobes 
(e.g., Haxby et al. 2000; Duchaine and Yovel 2015; Rossion 

et al. 2012; Zhen et al. 2015; Collins et al. 2016). Therefore, it 
provides an excellent model to assess the validity of the FPS-
fMRI approach. For comparison, we also ran a conventional 
face localizer based on a block-design with the exact same 
stimuli and same duration of scanning.

Our specific goals were to test whether the FPS-fMRI face 
localizer can (1) identify the well-known core face-selective 
areas and their right hemispheric dominance at both the group 
level and the individual level; (2) achieve higher sensitivity 
(SNR) in detecting face-selective neural response than the con-
ventional approach; (3) achieve higher specificity in localizing 
face-selective brain areas than a conventional approach, i.e., 
better isolating brain activity directly related to the high-level 
perceptual categorization process rather than low-level visual 
confounds or general factors such as attention; (4) achieve 
higher test–retest reliability in mapping face-selective brain 
areas than a conventional approach.

Materials and methods

Compliance with ethical standards

All procedures performed in this study involving human 
participants were in accordance with the ethical standards 

Fig. 1   The fast periodic stimulation (FPS)-fMRI paradigm. a Stimuli 
from non-target categories alternate at a rapid rate (6 Hz, blue bins, 
see Supplemental Movie S1). Every 9  s (i.e., 54 stimuli), a “burst” 
of stimuli from the target category (faces, red bins) is presented for 
2.167 s. This face burst contains seven faces alternating with six non-

face objects to form direct contrasts between faces and objects. Only 
sections of the sequences are shown in the figure. b Example face and 
object alternations (see Supplemental Figure S1 for more example 
images) and image contrast modulation (0–100%)
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of York University (Canada) Research Ethics Board (Cer-
tificate #: e2014-155) and with the 1964 Helsinki dec-
laration and its later amendments or comparable ethical 
standards. We obtained informed written consent from 
all the participants prior to the experimental sessions and 
they received $50 (Canadian) for their participation in 
the study. This study was funded by European Research 
Council Grant facessvep 284025 to BR, and an UCL/
Marie Curie postdoctoral fellowship to XG. The authors 
declare that they have no conflict of interest.

Participants

Twelve adults (8 females, mean age = 30.1 ± 5.4 years, 
age range 24–42 years) from the York University (Can-
ada) community participated in the fMRI experiment. All 
of the participants had normal or corrected-to-normal 
vision, and were right-handed (Oldfield 1971). None of 
the participants reported any history of psychiatric or 
neurological disorders, or current use of any psychoac-
tive medications.

Stimuli

The stimuli consisted of 100 face images and 200 non-face 
images (e.g., Fig. 2, the whole set of face and non-face 
images can be obtained upon request). The face images 
were digital photographs of 100 different individuals who 
were non-famous relatives, friends and colleagues of the 
researchers of the Face Categorization Lab of the Univer-
sity of Louvain, Belgium. Therefore, they were unfamiliar 
to the participants. Each photograph contained one human 
face. The photographs were originally taken for personal 
purposes, and were given to the researchers with a com-
pleted consent form to use these photographs for research 
purposes and display them. They contain a natural range of 
variation in size, pose, and expression of the faces depicted 
in the photographs and in lighting and background. The non-
face images consist of 200 photographs of scenes, objects, 
and animals. As in the face images, the non-face images also 
contain a natural range of variation in the composition and 
lighting of the images. The face images have a mean gray-
scale intensity value of 115.0 ± 1 and a mean contrast value 
of 0.49 ± 0.11. The non-face object images have a mean 

Fig. 2   Example stimuli. Both faces and objects contain a wide range 
of variation in the composition, color, and lighting. Such high vari-
ability reduces the contribution of specific low-level visual cues to 
perceptual categorization while preserving naturalness of the images 
(Rossion et  al. 2015). No amplitude spectrum equalizing was per-

formed on these images. Fourier phase-scrambled versions of the 
images (below each face and object image) were also created. The 
right-most column contains pixel-wise averaged images of all the 
faces, all the objects, and all the phase scrambled images within each 
category. No recognizable structure is seen in the average images
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grayscale intensity value of 115.2 ± 0.9 and a mean contrast 
value of 0.46 ± 0.12. On average, there is no statistical dif-
ference between the two sets of images on either the gray-
scale intensity value or image contrast. Pixel-wise averaging 
of either all the face images or all the non-face images did 
not reveal any identifiable structure (Fig. 2, the right most 
column). We created a Fourier phase scrambled version of 
each image (e.g., Fig. 2, bottom rows) by randomizing the 
phase of the original images (Sadr and Sinha 2004), as used 
in previous EEG studies with similar image sets (e.g., Ros-
sion et al. 2015). At a global level, these images contain the 
same low-level visual information (i.e., power spectra) of 
the original images, but without any recognizable structure. 
The phase-scrambled images were used in a control condi-
tion to test whether face-selective voxels activated in the 
FPS-fMRI paradigm are sensitive to low-level visual cues 
(i.e., amplitude spectrum).

Stimulation procedure

The images were back-projected in full color onto a pro-
jection screen by an MRI-compatible LCD projector and 
viewed by the participant through a mirror placed within 
the RF head coil at a viewing distance of 43 cm. They 
extended 14.6° × 14.6° of visual angle at the viewing dis-
tance (or 11 × 11 cm on the screen). The remaining area of 
the screen was set to a uniform gray background. The whole 
experiment procedure was controlled through a stimulation 
program running in Java, which also collected behavioral 
responses.

Main stimulation: FPS‑fMRI

As shown in Fig. 1a, in the FPS sequence, the images were 
displayed at a base rate of 6 Hz (i.e., 6 natural images/s, the 
blue bins in the figure), thus with a stimulus onset asyn-
chrony (SOA) of 166.7 ms (ten screen refresh cycles at a 
refresh rate of 60 Hz). Images were contrast modulated by 
a sinusoidal function so that each image appeared at 0% 
contrast, reached 100% contrast at the 6th frame and then 
dropped its contrast to 9.55% at the 10th frame (Fig. 1b). 
The same sinusoidal contrast modulation has been used 
in previous EEG studies (e.g., Rossion and Boremanse 
2011), in particular with this paradigm (e.g., Rossion et al. 
2015). Although virtually identical amplitude results can 
be observed in EEG when stimulating with 50% duty-cycle 
square waves and sine waves (e.g., Retter and Rossion 2016), 
using sine waves has several advantages. First, since images 
at low contrast are visible, the visual stimulation is almost 
always present and gives the observer a continuous percep-
tual stimulation; second, it is smoother as a visual stimula-
tion than abrupt changes (i.e., square waves).

Every 9 s, a set of seven faces appeared at a rate of 3 Hz, 
i.e., alternating with non-face images (referred to as a face 
burst, covering 2.167 s, the red bins in Fig. 1a). Each run had 
a length of 396 s so that the face burst appeared 44 times at 
a fixed frequency of 1/9 Hz (i.e., 0.111 Hz, referred to as the 
face stimulation frequency). For each presentation, an image 
was drawn from the corresponding image set (face or non-
face) according to a random order. When all the images in 
the respective sets had been presented, a new random order 
was generated and the images were drawn according to this 
new random order. So across all the runs and all the subjects, 
the order of image presentation was always different as it 
was randomly generated online. In total, in one FPS-fMRI 
run, face images appeared 7 × 44 = 308 times while non-face 
images appeared 2068 times.1 We refer to this condition as 
FPS-face.

Phase‑scrambled image stimulation

In this condition, we used exactly the same design as 
the FPS-face sequence but all face and non-face images 
were phase scrambled. We refer this condition to as FPS 
scrambled.

Conventional face localizer

To test the sensitivity and selectivity of the FPS-fMRI 
approach, we included a conventional fMRI block design 
functional localizer (“face localizer”, e.g., Kanwisher et al. 
1997), and referred it to as CONV-face condition. In this 
design, faces and non-face images appeared in alternating 
18-s blocks with no fixation rest period between blocks. 
Such a design is thought to be optimal for estimating the 
contrast between two conditions (Smith et al. 2007; Maus 
et al. 2010). We matched the conventional face localizer to 
the FPS-face runs for two critical aspects: run duration and 
total number of face images presented. Specifically, the run 
length was exactly the same as in the FPS-face sequence 
(396 s) with 11 repetitions of the face and non-face blocks. 
In total, face images appeared for 28 × 11 = 308 times, which 

1  Given this ratio and the respective number of nonface images and 
face images, nonface images repeat more often during a run than face 
images (i.e., ~ 3 times per face image versus ~ 10 times per object 
image). Equating the number of repetitions here would require using 
about 600 object images. Alternatively, one could reduce the number 
of face images, but at the expense of generalizability. Importantly, 
human electrophysiological studies using this stimulation mode 
have shown the same face-selective response with face and nonface 
images being equated for repetition (e.g., Rossion et al. 2015; Jacques 
et al., 2016) or not (Retter and Rossion 2016). Most importantly, the 
latter study directly demonstrated that the face-selective response is 
immune to large variations in ratios between the number of presented 
face and nonface images (Retter and Rossion 2016).
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matched the number of the appearance of faces in the FPS-
face runs. However, in the conventional face localizer, the 
non-face images also appeared for 308 times, as in typi-
cal block design studies. Within each 18 s block there were 
28 images displayed at 1.56 Hz. Each image appeared for 
643 ms with its contrast ramped up from 80 to 100% and 
then dropped back to 80% following a sinusoidal function. 
This way, images were presented successively, without a 
blank interval. The modulation of the contrast provided a 
relatively smooth transition between images (Supplemental 
movie S2 for an example).

Behavioral task and order of conditions

In all the three conditions, the participants performed the 
same behavioral task, orthogonal to the measure of interest. 
They were instructed to press a predefined key on an MRI-
compatible response pad using the right index finger when 
they detected color changes of the central crosshairs super-
imposed on the images (Rossion et al. 2015). The crosshairs 
extended a visual angle of 1.2° in the center of the screen. 
During each run, the color of the crosshairs changed from 
black to white for 200 ms, for a total of 70 times with the 
interval between two changes randomized while keeping 
above a minimal interval of 2 s. All participants achieved 
high accuracy (mean accuracy across conditions range from 
0.927 to 0.993) in the behavioral task with no significant 
difference among the three conditions in either accuracy 
(F2,11 = 3.53, p = 0.07, Greenhouse–Geisser corrected) or 
correct response time (F2,11 = 1.55, p = 0.23).

Each participant started the first session with one run 
of each condition (FPS-face, FPS-scrambled, CONV-face) 
in a random order. A high-resolution anatomic image was 
obtained after the first session. After the anatomic image, 
each participant continued with the second session of one 
run of each of the three conditions in a pseudo-random order 
with the first run in the second session being a different 
condition from the last run in the first session. The partici-
pants took a short break after finishing the second session. 
After the break, they continued with the third session with 
only one run of the FPS-face condition and one run of the 
CONV-face condition in a pseudo-random order, with the 
first run in the third session being a different condition from 
the last run in the second session. In total, each participant 
had three FPS-face runs, three CONV-face runs, two FPS-
scramble runs, and one anatomic run. The whole experiment 
took about 1 h and 30 min. Only two FPS-scrambled runs 
were collected to save scanning time and because the FPS-
scrambled runs were not compared to the other conditions 
quantitatively.

MR image acquisition

We acquired the MRI images using a 3T Siemens Magnetom 
Trio system (Siemens Medical System, Erlangen, Germany) 
with a 32-channel head coil. Anatomic images were col-
lected using a high-resolution T1-weighted magnetization-
prepared gradient-echo image (MP-RAGE) sequence (192 
sagittal slices, TR 2300 ms, TE 2.62 ms, voxel size 1 mm 
isotropic, FA 9°, FoV 256 × 256 mm2, matrix size 256 × 256, 
parallel scanning mode GRAPPA, accelerate factor 2). The 
acquisition time for the anatomic scan was 321 s. Functional 
images were collected with a T2*-weighted gradient-echo 
echoplanar imaging (EPI) sequence (TR 1,500  ms, TE 
30 ms, FA 62°, voxel size 3 mm isotropic, FoV 192 × 192 
mm2, matrix size 64 × 64, interleaved, parallel scanning 
mode GRAPPA, accelerate factor 2), which acquired 25 
oblique–axial slices covering the whole occipital lobe and 
the whole temporal lobe, and most of the parietal and frontal 
lobes, but missing the superior portion of the parietal and 
frontal lobes. The acquisition time for each functional run 
was 414 s.

MRI/fMRI analysis2

Preprocessing

The functional runs were motion-corrected in reference to 
the average image of the first functional run of the experi-
ment using a 6° rigid body translation and rotation via an 
intra-modal volume linear registration using the FMRIB 
Software Library (FSL, version 5.0.8, Smith et al. 2004). 
The motion-corrected images were spatially smoothed with 
a Gaussian kernel with a moderate size (3 mm FWHM) to 
increase overlap of regions across runs and reduce noise 
level while keeping a high spatial resolution (Worsley et al. 
1996).

SNR (z‑score) of category‑selective response

For each run with the FPS-fMRI paradigm (FPS-face and 
FPS-scrambled), we removed linear trends from the preproc-
essed time series data of each voxel by removing the best 
straight-line fit to the data and converted the time series data 
to percentage of BOLD signal change by dividing the time 
series of each voxel by its mean signal intensity. We then 
performed fast Fourier transform (FFT) to obtain the ampli-
tude spectrum of the time series. To gauge the strength of 
the BOLD response at the face stimulation frequency (the 
signal) relative to the noise, we converted the amplitude of 

2  All the data analysis scripts in the current study are available upon 
request.
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the face stimulation frequency (0.111 Hz) to a z-score as in 
previous studies (McCarthy et al. 1994; Puce et al. 1995). 
By definition, a z-score is the baseline corrected signal level 
over noise level measured as the noise standard deviation, 
and is thus considered as a measure of SNR of the face-
selective neural activity (Welvaert and Rosseel 2013):

where AS is the amplitude of the face stimulation frequency, 
�N is the mean of 40 neighboring frequency bins (20 on 
each side, with a bin width of 0.0025 Hz; e.g., Rossion et al. 
2015; Jonas et al. 2016) and �N is the standard deviation of 
the amplitude of the 40 neighboring frequency bins. This 
procedure is applied to each voxel independently. Since the 
face stimulation frequency (0.111 Hz) is set by the experi-
menter, the SNR of the face stimulation frequency provides 
an objective measure of face-selective neural responses.

Defining activation/deactivation using response phase

A voxel having a high SNR value at the face stimulation fre-
quency responded differentially to faces and objects, but not 
necessarily more to faces than to objects. Indeed, it is possi-
ble for a voxel to achieve a high SNR at the face stimulation 
frequency if the BOLD response systematically decreases 
(i.e., deactivates) to the appearance of faces relative to the 
objects. We used the phase value from the FFT analysis to 
define the direction of category-selective responses in the 
FPS-face condition for each voxel. In general, a phase value 
of zero means reaching maximum BOLD response ampli-
tude at the onset of faces. A positive phase value means 
increasing BOLD response amplitude after the onset of 
faces, while a negative phase value means decreasing BOLD 
response amplitude after the onset of faces. To account for 

(1)SNR = (AS − �N)∕�N

individual differences in the time to reach maximum BOLD 
response amplitude after the onset of faces, we plotted the 
histogram (20 bins) of phase values of all the voxels with 
a z-score above 3 and with only a positive phase value. We 
used the phase value of the histogram bin that has the largest 
number as the center phase (φ) and defined all the voxels 
with their phase values within the window of (φ ± π/2) as 
activation (+ sign) and voxels with their phase values outside 
of this window as deactivation (− sign). We created a sign 
map and applied this map to a thresholded SNR (z-score) 
map (Fig.  3). We obtained the final category-selective 
response map containing only voxels that have increased 
BOLD response to the presence of faces.

Conventional face localizer

For each CONV-face run, following a standard procedure 
(e.g., Weiner and Grill-Spector 2010), we estimated the 
voxel-wise BOLD response amplitudes to face blocks and 
non-face blocks by fitting the preprocessed time series data 
with a general linear model (GLM), convolved with a hemo-
dynamic response function (canonical HRF, SPM8) with 
temporal derivatives, autocorrelation model type AR(1), and 
with nuisance regressors including six movement parame-
ters. We conducted a linear contrast to obtain the t statistical 
map where the BOLD responses to faces were greater than 
to non-face images. By nature, the t values are a measure of 
SNR, since the t values are calculated by dividing the dif-
ference of activation amplitudes between faces and non-face 
images (signal) by the estimated standard error of the activa-
tion (noise). To make the SNR directly comparable between 
conditions, we converted the t values to z-scores by calcu-
lating the corresponding p values from the t distributions.

Fig. 3   Sign masking of the FPS-face runs (in one example brain). a 
Unsigned SNR map with voxels that are above threshold of p < 10−4, 
uncorrected. b Sign map defined by phase value from FFT analysis, 

orange for positive sign (activation) and blue for negative sign (deac-
tivation). c A signed SNR map created by applying the sign map in b 
to the map in a. d SNR map with negative values removed
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Using data from all runs

In the FPS-face condition, across runs, the responses to the 
periodic face stimulations in a given population of neurons 
should have the same phase, while any noise from a peri-
odic source (e.g., pulse, breathing) could have different 
phases across runs. Therefore, we averaged the time series 
across the three FPS-face runs to increase the signal-to-noise 
ratio, similar to the use of this approach in electrophysiol-
ogy (Regan 1989). Since the same principle applies to the 
FPS-scrambled condition, we averaged time series across 
the two FPS-scrambled runs. For the conventional local-
izer, we ran the same GLM analysis as with individual runs, 
but with the time series from all three runs. In this case, 
run is added to the GLM analysis as a fixed effect. Using 
data from all three runs in the GLM analysis, we increased 
the degree of freedom in the face > non-face contrast from 
241 to 723. Therefore, we increased power to detect any 
differences between neural responses to faces and non-face 
objects. With the same procedure as with individual runs, we 
created a z-map for each condition with data from all runs 
for each participant.

Analysis procedures

We performed qualitative and quantitative analyses to evalu-
ate the effectiveness of the FPS-fMRI approach. We first 
identified all the brain areas with face-selective activity 
above a statistical threshold level. Importantly, we expected 
to disclose activation in the core face processing network, 
including the OFA, FFA, and pSTS at both the group level 
and in individual brains, while we expected little or no 
activation of these areas in the FPS-scrambled condition. 
The group level analysis reveals the most consistent areas 
across participants, while the individual level analysis pro-
vides complementary information with regard to individual 
variability in functional localization. We also assessed the 
specificity of the FPS-fMRI paradigm by measuring putative 
activation in low-level visual areas as a result of face stimu-
lation as well as activation of face-selective areas in the FPS-
scrambled condition. Within anatomically defined ROIs, 
we quantified the magnitude (as peak SNR) and extent (as 
number of super-threshold voxels) of face-selective activity. 
With such quantitative measures, we compared the level of 
face-selective activity between hemispheres and between the 
FPS-fMRI approach and the conventional approach. Since 
we collected multiple scanning runs for each paradigm, we 
calculated the test–retest reliability in defining the spatial 
activation map and compared the reliability between the 
two paradigms. Finally, we tested the respective contribu-
tion of the stimulation paradigm (FPS vs. conventional) and 
analysis procedure (Fourier analysis vs. GLM) in detecting 
face-selective activity.

Group analysis

We used the individual z-maps derived from data based on 
all runs for each condition to calculate an average group 
z-map for each condition. We used cortical surface-based 
averaging algorithms in FreeSurfer, which has been show to 
yield a better alignment across subjects than volume-based 
normalization methods (Fischl et al. 1999). The surface-
based approach morphs each participant’s cortical surface 
reconstructed from high-resolution anatomical scan to an 
averaged spherical surface of all the 12 participants using a 
best-fit sulci alignment. Individual z-maps were then inter-
polated onto the average sphere and averaged across partici-
pants. The averaged z-scores are no longer from a standard 
normal distribution. Instead, they have a standard devia-
tion of 1∕

√

n (n = 12, number of participants). Therefore, 
we adjusted the z threshold with the same factor ( 1∕

√

n ). 
Because group averaging can be affected by extreme values, 
we applied a conservative threshold (p < 10−6, uncorrected, 
equivalent to a Bonferroni corrected p < 0.05) to identify 
areas that are face-selective at a group level.

Region of interest (ROI)‑based individual analysis

Previous studies have shown a considerable amount of 
variability across individuals in both brain structure and 
functional localization (Frost and Goebel 2012; Zilles and 
Amunts 2013), particularly in face localizers (Rossion et al. 
2012; Zhen et al. 2015). Therefore, it is critical to also ana-
lyze the face-selective responses at an individual level. We 
first created an average cortical surface and mapped the indi-
vidual face-selective activity to the average cortical surface 
as in the group analysis. We then created 20 anatomically 
defined ROIs (10 in each hemisphere) on the average cortical 
surface. The ROIs were selected based on the results of the 
group analysis and were defined by an automatical parcella-
tion scheme by Freesurfer. The parcellation algorithms are 
based on anatomical rules and have good concordance with 
manual labels (Destrieux et al. 2010). The selected ROIs 
include: inferior occipital gyrus, calcarine sulcus, cuneus, 
parieto-occipital sulcus, precuneus, fusiform gyrus, lingual 
gyrus, anterior occipito-temporal sulcus, superior temporal 
sulcus, and inferior frontal sulcus. In addition, we manually 
drew on the cortical surface a ROI covering the anterior 
collateral sulcus. For the superior temporal sulcus, we fur-
ther divided it into an anterior portion and a posterior por-
tion with the boundary defined by the posterior tip of the 
hippocampus (Kim et al. 2000). We combined the fusiform 
gyrus and the lateral occipito-temporal sulcus into a single 
ROI, since the activation in the fusiform gyrus extends later-
ally into the sulcus. We also combined the anterior occip-
ito-temporal sulcus and the anterior collateral sulcus into a 
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single ROI, representing a face-selective area in the ATL. 
Figure 4 shows the ROIs on an inflated cortical surface.

Test–retest reliability in functional localization

To assess the reliability of the FPS paradigm, we analyzed 
data of each individual run in the FPS-face condition. In 
comparison, we also analyzed the individual runs in the 
CONV-face condition. We quantified the overlap between 
face-selective voxels identified in different runs, using the 
Dice coefficient:

where Oij is the consistency score between run i and run j, 
Vij is the number of super-threshold voxels in both runs, Vi 

(2)Oij = 2 × Vij∕(Vi + Vj)

is the number of super-threshold voxels in run i, and Vj is the 
number of super-threshold voxels in run j.

For each individual participant, within each condition, 
we calculated the consistency scores between run 1 and 
run 2, between run 1 and run 3, and between run 2 and run 
3. We then averaged the three consistency scores to obtain 
a consistency score for that condition for every individual 
and compute an average score of reliability at the group 
level. We ran this analysis at the whole brain level, within 
the anatomically defined right fusiform gyrus, and within 
the functionally defined right FFA. For the analysis within 
functionally defined right FFA, since the data from the first 
run were used to define the ROI, we calculated the dice 
coefficient with data from run 2 and run 3.

Fig. 4   Anatomically defined regions of interests (ROIs). The ROIs 
were selected based on the results from the group analysis. The ROIs 
were automatically parcellated by Freesurfer based on reconstructed 
cortical surface from high-resolution anatomic scans. We divided the 
superior temporal sulcus into an anterior portion and a posterior por-
tion with the boundary defined by the posterior tip of the hippocam-

pus. We combined fusiform gyrus and lateral occipito-temporal sul-
cus to be one ROI since the activation in the fusiform gyrus extends 
laterally into the sulcus. We manually labeled anterior collateral sul-
cus and combined it with anterior occipito-temporal sulcus to form 
the ATL ROI
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Respective contribution of analysis procedure 
and stimulation paradigm

One advantage of the FPS paradigm is that it does not rely 
on the GLM framework. Instead, neural response amplitude 
is measured by applying FFT to the neural response time 
course, as in early fMRI face-localizer studies (Puce et al. 
1995). As explained earlier, the FFT approach has high SNR 
since the signal is only affected by narrow-band noise. To 
investigate the potential impact of the two data analysis pro-
cedures (GLM vs. FFT), we performed GLM analysis to the 
FPS-face data. Correspondingly, we performed FFT analysis 
to the data from the CONV-face runs.

GLM analysis of the FPS‑face data

As with the GLM analysis with the data from the CONV-
face runs, we modeled BOLD response with two event 
types, faces and non-face objects, the two events alternating 
44 times within each scan run. Each face event lasted for 
2.167 s, while each non-face event lasted for 6.833 s with no 
gap in between events. We included all three FPS-face runs 
in the model data and modeled run as a fixed effect. A linear 
contrast (t test) was constructed to compare the response 
amplitudes to faces and to non-face objects. The resulting 
t values were converted to z-scores for further comparison.

FFT analysis of the CONV‑face data

The conventional localizer included 18-s face blocks and 
18-s non-face object blocks alternating 11 times within each 
scanning run. Such a periodic presentation of the blocks 
allowed to analyze the neural responses in the frequency 
domain. Specifically, both face-selective and non-face 
selective neural responses should have high amplitudes at 
1/36 Hz. Similar to the FPS-face condition, we defined signs 
for each voxel using the phase value from the FFT analysis.

Results

FPS‑fMRI effectively defines category‑selective 
BOLD responses

To illustrate the effectiveness of the FPS-fMRI paradigm in 
defining category-selective BOLD responses, we first con-
sider a representative voxel, identified by showing the largest 
faces > objects contrast in a single brain in the conventional 
face localizer (Fig. 5a). This voxel is located in the region 
showing the largest face-selective response in the human 
brain, the lateral section of the right fusiform gyrus, often 
defined as the fusiform face area (FFA, Kanwisher et al. 
1997). Fast Fourier transform (FFT) applied to the BOLD 

response time course of this voxel (Fig. 5b) reveals a high 
signal at the face stimulation frequency (0.111 Hz) in the 
FPS-face condition (Fig. 5c). Given the very high frequency 
resolution (1/396 s = 0.0025 Hz), the signal is concentrated 
on a tiny frequency bin in the amplitude spectrum of the 
BOLD response. For this example voxel, all of the responses 
of interest concentrate on the fundamental frequency, i.e., 
0.111 Hz. In the same region in a few other individual 
brains, there were also negligible amplitude increases at the 
second harmonic (0.222 Hz) (Supplemental Figure S2).

In all individual brains, the FPS-face condition achieved 
very high SNR (z-score ranged from 13.9 to 31.0, mean 
20.8 ± 5.2) at the face stimulation frequency in the peak 
face-selective voxel in the right FFA identified by the con-
ventional face localizer (z-score ranged from 7.9 to 17.3, 
mean 12.4 ± 2.9). Therefore, the FPS-fMRI paradigm can 
effectively modulate the BOLD signal representing a dif-
ferential neural response to faces vs. non-face objects. 
Strikingly, there was no signal at the face stimulation fre-
quency in the FPS-scrambled condition in any of these 
voxels [z-score mean 0.25 ± 1.04, t(11) 0.83, p = 0.42, two-
tailed test against 0]. The absence of response in the BOLD 
amplitude spectrum of the same voxels for phase-scrambled 
images implies that low-level image properties contained 
in the power spectrum did not contribute to the peak of the 
face-selective BOLD response at the face stimulation fre-
quency in the right FFA, as well as in other face-selective 
regions (Supplemental Figure S3).

Mapping face‑selective cortical areas (group 
analysis)

In the group averaged activation map of the FPS-face condi-
tion, as shown in Fig. 6a, with a conservative threshold level 
of uncorrected p < 10−6 (equivalent to a Bonferroni corrected 
p < 0.05), in both hemispheres, we identified face-selective 
areas in the well-known core face processing network 
(Haxby et al. 2000; Duchaine and Yovel 2015) consisting 
of three cortical areas, namely the FFA in the middle section 
of the lateral fusiform gyrus (FG), the occipital face area 
(“OFA”) in the inferior occipital gyrus (IOG), and the pos-
terior superior temporal sulcus (pSTS). In both hemispheres, 
the most significant response, i.e., peak of face-selectivity, 
corresponds to the FFA, and the highest average z-score is 
found in the right FFA, with a typical 3D coordinate in a 
normalized brain (42, − 54, − 14 in Talairach coordinates, 
compare, for instance, to the right FFA coordinate in Kan-
wisher et al. (1997): 40, − 55, − 10; Zhen et al. (2015), for 
pFFA: 42, − 51, − 14 (converted from MNI to Talairach); 
Jonas et al. (2016), FFA identified in human intracerebral 
recording: 41, − 45, − 16).

Importantly, the group averaged map of the FPS-face con-
dition also revealed consistent face-selective activity in the 
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anterior temporal lobe (ATL) in both hemispheres (Fig. 6a). 
The role of ATL in face-selective processing is known from 
intracerebral recordings (Puce 1999; Jonas et al. 2016) and 
human lesion studies causing individual face recognition 
impairments (e.g., Busigny et al. 2014) but has only been 
recently brought to attention in fMRI (Rajimehr et al. 2009; 
Nasr and Tootell 2012; Collins and Olson 2014; Von Der 
Heide et al. 2013; Collins et al. 2016), due to the difficulty in 
identifying these regions associated with a drop of SNR and 
large magnetic susceptibility artifacts (Axelrod and Yovel 
2013; Jonas et al. 2015; Rajimehr et al. 2009; Wandell 2011; 
Lafer-Sousa et al. 2016; see Rossion et al. 2018 for a dis-
cussion of this issue) (see Supplemental Figure S4 for an 
example of MRI signal drop in the ATL).

Besides the core face processing network and the ATL, 
the group averaged map of the FPS-face condition also iden-
tified consistent face-selective activity in areas previously 
reported to be involved in face processing in neuroimaging 
studies. These areas include the inferior frontal sulcus (IFS; 
e.g., Fox et al. 2009; Ishai et al. 2005; Chan and Downing 
2011), lingual gyrus (LG; e.g., Gobbini and Haxby 2006; 
Rossion et al. 2012), Cuneus (e.g., Benuzzi et al. 2007; 

Rossion et al. 2012), and parieto-occipital sulcus (POS; e.g., 
Tuladhar et al. 2007; Jokish and; Jensen 2007).

In the group-averaged map of the CONV-face condition, 
at the same threshold level, we also identified the core face-
selective network including bilateral FFA, OFA, and pSTS. 
However, we noticed three marked differences in compari-
son to the FPS-face condition: (1) the magnitude of face-
selective activation in the FPS-face condition is much higher 
than in the CONV-face condition. The average maximum 
SNR (z-score) in the FPS-face condition (25.0 ± 5.7) is about 
twofold higher than in the CONV-face condition (13.1 ± 3.2, 
t(11) = 6.2, p < 0.001, Cohen’s d = 2.57, Fig. 6b). Notably, 
such an increase in the peak face-selective neural responses 
in the FPS approach compared to the conventional approach 
is found in every individual brain tested (range of the ratio 
of increase 1.1–3.4). At the same time, there is no signifi-
cant difference between the total volumes of face-selective 
activity identified in the two conditions (p = 0.26, Fig. 6c); 
(2) at this threshold level (p < 10−6, uncorrected). This is 
because of the lack of face-selective activity in ATL in the 
group-averaged map (Fig. 6a); (3) in the CONV-face condi-
tion is compensated by extensive activity in the low-level 

Fig. 5   BOLD response in an example face-selective voxel. a Peak 
face-selective voxel (cross hair, right lateral fusiform gyrus) defined 
by faces > objects contrast in the conventional face localizer. b BOLD 
response time courses of the peak face-selective voxel in the FPS 
paradigm with natural images (FPS-face, in red) or with phase-scram-

bled images (FPS-scrambled, in green). c Amplitude spectra of the 
BOLD response. The white dashed line indicates the face stimulation 
frequency (0.111 Hz). d Signal-to-noise ratio (z-score) of the ampli-
tudes
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visual regions (e.g., calcarine sulcus, Fig. 6a, d) only in this 
CONV-face condition.

Face‑selective cortical areas in individual brains

Complementary to the group activation maps, we quantified 
face-selective neural activity in each individual brain with a 
threshold level of p < 10−4, uncorrected. This is a necessary 
step because substantial variability exists in brain structure 
as well as in functional localization (Frost and Goebel 2012; 
Rossion et al. 2012; Zhen et al. 2015; Zilles and Amunts 

2013). As can be seen in Fig. 7, the face-selective activa-
tions identified in the FPS-face condition and the CONV-
face condition are more focal in individual brains than in the 
averaged maps (Fig. 6a).

In both paradigms, consistent with previous neuroimag-
ing studies (e.g., Kanwisher et al. 1997; McCarthy et al. 
1997; Sergent et al. 1992; Rossion et al. 2012; Zhen et al. 
2015), we found right hemisphere dominance, i.e., larger 
volume of face-selective activity in the right than in the left 
hemisphere, for the whole cortex (p = 0.0001 for FPS-face 
condition; p = 0.001 for CONV-face condition), as well as 

Fig. 6   Face-selective activity in the whole cortex and in anatomic 
ROIs. a Face-selective cortical areas identified based on group aver-
aged z maps (n = 12). The maps are thresholded at p < 10−6, uncor-
rected, and are projected onto an inflated average cortical surface 
of all the participants. b Peak SNR of face-selective activity in the 
whole cortex in the FPS-face condition and CONV-face condi-
tion, averaged across participants. c Total volume of face-selective 
responses in the whole cortex averaged over individual brains with a 
threshold level of p < 10−4, uncorrected. d Volume of face-selective 

activity in anatomical ROIs averaged over individual brains with a 
threshold level of p < 10−4, uncorrected. e Peak SNR of face-selec-
tive activity in anatomical ROIs, averaged across participants. Data 
are represented as mean ± SEM. In d and e, we combined homolo-
gous ROIs across hemispheres, as the results were similar for both 
hemispheres. FG fusiform gyrus, IOG inferior occipital gyrus, pSTS 
posterior superior temporal sulcus, ATL anterior temporal lobe, POS 
parieto-occipital sulcus, IFS inferior frontal sulcus, LG lingual gyrus, 
Cu cuneus, PreCu precuneus, Calc calcarine sulcus
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within ROIs: FG (p = 0.0001), pSTS (p = 0.004), and POS 
(p = 0.009) for the FPS-face condition; FG (p = 0.0003), 
pSTS (p = 0.001), and IOG (p = 0.04) for the CONV-face 
condition, and the location associated with high response 
magnitude is fairly consistent across the two paradigms for 
all individual brains (Fig. 7).

The FPS-face conditions identified 67 ± 27% of all the 
voxels that are identified as face-selective in the CONV-
face condition, while the CONV-face condition identified 
71 ± 21% of the face-selective voxels in the FPS-face con-
dition. While the percentage of brain activation overlap 
may appear relatively low in regard to the visual similar-
ity between brain maps in the two conditions (e.g., Fig. 6), 
in a single high-level region, e.g., the right FG, the FPS-
face condition identified 91 ± 8% of the total number of 

face-selective voxels identified by the CONV-face condi-
tion. However, this percentage is lower for the CONV-face 
condition (75 ± 22%).

Where are the voxels that are activated specifically in 
each condition? To answer this question, we quantified 
the volume of above-threshold voxels in ten anatomically 
defined brain areas (combining homologous areas across 
hemispheres) selected based on results of the group analysis. 
As shown in Fig. 6d, while the highest proportion of volume 
activated was found in the three core regions of the face 
network (FG, IOG, pSTS) plus ATL in the FPS-face condi-
tion, this proportion was slightly lower in the CONV-face 
condition. Also, importantly, the volume of face-selective 
area in ATL was significantly larger in the FPS-face condi-
tion than in the CONV-face condition (p = 0.011). This is 

Fig. 7   Individual maps of face-selective activity in VOTC. Magni-
tude (z-score) of face-selective activity was projected to an inflated 
cortical surface of each individual brain for the FPS-face and the 
CONV-face conditions, with a threshold level of p < 10−4, uncor-
rected. Note the overlap between the face-selective regions identified 

by the two conditions, but with much higher magnitude reached in 
the FPS paradigm, leading to extra activation clusters in the anterior 
temporal lobe (highlighted with white circles). See Supplemental Fig-
ure S5 for lateral and medial views of face-selective activity in all the 
individual brains
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particularly important in the context of the relatively recent 
focus on ATL in face processing and the general difficulty 
in identifying these regions in fMRI due to magnetic sus-
ceptibility artifacts.

Considering individual brains, the FPS approach was 
able to identify regions in 11 (Fig. 7) individual brains 
out of a total of 12, without using specific fMRI sequences 
to reduce magnetic susceptibility artifacts in the tempo-
ral lobe (Devlin et al. 2000; Embleton et al. 2010; Visser 
et al. 2010). In contrast, a much larger volume of “face-
selective” activation was found in low-level visual regions 
such as the calcarine sulcus and the precuneus in the 
CONV-face condition than in the FPS-face condition in 
both hemispheres (p = 0.039, p = 0.038 in calcarine sulcus 
and precuneus, respectively, see Figs. 6d, 8). This finding 

suggests that even with widely variable natural images the 
conventional face localizer is more affected by low-level 
visual differences between faces and non-face object cat-
egories, as predicted.

Besides volume, the FPS paradigm achieved much 
higher face-selective response magnitude in higher-
level areas than the CONV-face condition (Fig.  6e; 
FG, p = 0.0001; IOG, p = 0.001; pSTS, p = 0.008; ATL, 
p = 0.0005).

In summary, the FPS approach is much more sensitive 
to detect face-selective neural activity in typical high-level 
visual areas and the anterior temporal lobe, while being 
less contaminated by low-level confounds (i.e., more spe-
cific) than a conventional localizer procedure in fMRI.

Fig. 8   “Face-selective” activity in calcarine sulcus. Inflated surfaces 
of the medial occipital cortex of five example participants show 
“face-selective” activity in bilateral calcarine sulcus in the CONV-

face condition but not in the FPS-face condition. The maps are thres-
holded at p < 10−4, uncorrected
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Test–retest reliability

How reliable, or replicable, are these observations, is a key 
issue in the current fMRI research (Bennett and Miller 2010; 
Nichols et al. 2017). Figure 9a provides a visual illustration 
of the consistency across runs in one representative partici-
pant: there is a good correspondence of face-selective voxels 
across different runs within both the FPS-face condition and 
the CONV-face condition.

First, we confined the analysis within an anatomically 
defined area containing only voxels in the right fusiform 
gyrus (the anatomical ROI or aROI approach) to make the 
current measure comparable to values reported in previous 
studies (Berman et al. 2010; Duncan et al. 2009; Duncan and 
Devlin 2011). At a threshold level of uncorrected p < 10−4, 
the face-selective voxels identified in different runs in the 
CONV-face condition reached an average dice coefficient 
of 0.58 ± 0.25, which is in the high end of the typical range 
as reported in previous studies (Berman et al. 2010; Dun-
can et al. 2009; Duncan and Devlin 2011). However, the 
FPS-face condition reached a significantly higher consist-
ency [0.80 ± 0.07, range 0.67–0.90, t(11) = 3.08, p = 0.01], 
reaching 80% overlap of face-selective voxels between runs 
on average. Note that this consistency value is obtained 
in a ROI, the right fusiform gyrus, containing only about 
30% of voxels above threshold, so that brain activity in the 
vast majority of voxels below threshold may vary randomly 
from run to run and decrease this consistency value. Another 
approach is to confine the analysis to the right FFA in every 
individual as defined on the first run of each condition (the 
functional ROI, or fROI approach), and calculate the Dice 
index using data from the other two runs. Here, consist-
ency values reach 0.91 ± 0.07 (0.79–0.99, see Fig. 9b for a 
visual demonstration of consistency in the FFA in individual 
participants) in the FPS-face condition, significantly higher 
than in the CONV-face condition (0.67 ± 0.37; t(11) = 2.3, 
p = 0.04). To our knowledge, this is the highest consistency 
value ever reported in localizing right FFA across different 
imaging runs within the same session.

Since test–retest reliability may decrease with increasing 
threshold (Berman et al. 2010; Duncan et al. 2009; Duncan 
and Devlin 2011), we calculated the Dice coefficients at five 
levels from a liberal (uncorrected p < 10−2) to a conservative 
(uncorrected p < 10−6, equivalent to a Bonferroni corrected 
p < 0.05) threshold. We performed the calculation separately 
within the anatomically defined right fusiform gyrus and 
the whole cortex (aROI approach). We also calculated the 
reliability score within functionally defined right FFA based 
on the first run of each condition, and all the super-threshold 
voxels in the whole cortex in the first run (fROI approach).

In the CONV-face condition, reliability decreased 
with increasing threshold (Fig. 9c) in both the anatomi-
cally defined right fusiform gyrus (slope = − 0.04, 95% CI 

− 0.054 to − 0.030) and the functionally defined right FFA 
(slope = − 0.04, 95% CI − 0.067 to − 0.019), as previously 
reported (Berman et al. 2010; Duncan et al. 2009; Duncan 
and Devlin 2011). However, the reliability decreased less 
steeply with increasing threshold in the FPS-face condi-
tion (slope = − 0.016 for aROI approach and − 0.012 for 
fROI approach), achieving Dice coefficients of around 0.9 
at all threshold levels in the right FFA. To the best of our 
knowledge, this is the highest test–retest reliability of spatial 
overlap of activation maps across fMRI scanning runs yet 
reported in a high-level functional area.

In the whole cortex (Fig. 9c), reliability was lower in 
general comparing to corresponding values from the right 
fusiform gyrus (aROI) or right FFA (fROI). Nevertheless, in 
the FPS-face condition, within a functional mask defined by 
the super-threshold voxels from the first run, the reliability 
score reached above 0.8 at all threshold levels. In contrast, 
the highest average reliability score in the CONV-face con-
dition was below 0.6.

In summary, while the conventional face localizer used 
in this study is at least as valid and reliable as those used in 
previous studies, the FPS-fMRI approach greatly enhances 
test–retest reliability of category-selective neural activation.

The respective contribution of FFT analysis 
and stimulation mode

Finally, we investigated the respective contribution of stim-
ulation paradigm and analysis procedure to the maximum 
face-selective response in the whole brain and in three face-
selective areas showing maximal differences between the 
FPS-face condition and CONV-face condition: the FG, ATL, 
and calcarine sulcus.

At the whole brain level (Fig. 10a), both stimulation para-
digm [F(1, 11) = 4.83, p = 0.05, η = 0.31] and analysis pro-
cedure [F(1,11) = 99.2, p < 0.001, η = 0.90] contributed to 
peak face-selective activity, without significant interaction. 
We found similar patterns within FG (Fig. 10b) and ATL 
(Fig. 10c). There were significant main effects of stimu-
lation paradigm [FG: F(1, 11) = 5.53, p = 0.038, η = 0.33; 
ATL, F(1, 11) = 4.01, p = 0.07, η = 0.27] and analysis 
procedure [FG: F(1,11) = 67.6, p < 0.001, η = 0.86; ATL: 
F(1,11) = 11.4, p = 0.002, η = 0.58] without any interaction. 
Hence, the results suggest that both factors contribute to the 
highest face-selective responses observed in key regions. 
The fast and periodic presentation of visual stimuli increases 
face-selective SNR over the slow and blocked presenta-
tion. At the same time, analyzing the data using FFT also 
increases face-selective SNR over the conventional GLM 
approach.

In the calcarine sulcus (Fig.  10d), the main effects 
of the stimulation paradigm [F(1,11) = 11.1, p = 0.007, 
η = 0.50] and analysis procedure [F(1,11) = 17.8, 
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Fig. 9   Test–retest reliability of 
face-selective spatial activa-
tion maps. a An example of 
face-selective neural response 
in each run of the FPS-face 
condition (FPS-face runs 1, 2, 
3) and the CONV-face condition 
(CONV-face runs 1, 2, 3) in one 
participant (see Supplemental 
Figure S6 for all the partici-
pants). “FPS-face run average” 
was calculated based on the 
average BOLD response time 
course of the three FPS-face 
runs. “CONV-face all runs” was 
calculated based on data from 
all the three CONV-face runs. 
Voxels in the whole brain were 
listed on a one-dimensional axis 
(voxel number), so only spatial 
correspondence between differ-
ent conditions was maintained. 
b Example spatial activation 
maps of three FPS-face runs 
in five participants (threshold 
level, p < 10−4, uncorrected). c 
Dice coefficient of spatial over-
lap of super-threshold voxels 
across three runs in the FPS-
face and CONV-face conditions 
at five levels of thresholds. Data 
are represented as mean ± SEM. 
Left panel: reliability analyses 
confined within anatomically 
defined right fusiform gyrus 
(aROI) or the functionally 
defined right FFA based on the 
first run (fROI). Right panel: 
reliability analyses in the whole 
cortex (aROI) or within the 
super-threshold voxels based on 
the first run (fROI)
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p = 0.001, η = 0.62] were modulated by a significant inter-
action [F(1,11) = 16.8, p = 0.002, η = 0.60]. The pattern 
of results show that in the FPS-face condition, activity 
in the calcarine sulcus was low, and analysis procedure 
did not make any difference [t(11) = − 0.02, p = 0.98]. 
However, the FFT analysis was more sensitive than the 
GLM analysis in measuring “face-selective” activity in the 
calcarine sulcus in the CONV-face condition [t(11) = 4.24, 
p = 0.001]. The results indicate that the removal of low-
level visual confounds is due to the specific stimulation 

parameters of the FPS-fMRI paradigm (i.e., periodicity 
constraints, brief masked stimulation, direct contrasts).

Discussion

Many neuroscientists seek to understand brain function by 
characterizing and comparing neural responses within differ-
ent (cortical) regions and brain networks. Understanding the 
nature of the processes occurring in different brain regions 

Fig. 10   Respective contribution of analysis procedure and stimula-
tion paradigm on peak face-selective response. a Peak face-selective 
response in the whole cortex. b Peak face-selective response in the 
fusiform gyrus. c Peak face-selective response in the anterior tempo-
ral lobe. d Peak face-selective response in the calcarine sulcus. FPSfft 
FPS-face condition with FFT-based data analysis, CONVfft CONV-
face condition with FFT-based data analysis, FPSglm FPS-face condi-

tion with GLM-based analysis, CONVglm CONV-face condition with 
GLM-based analysis. Each dot represents the value of one partici-
pant. The black dashed lines represent a threshold level of p < 10–4, 
uncorrected. The gray dashed lines connect the values from the same 
participant in different conditions. The solid squares represent the 
group means ± SEM. We combined homologous ROIs across hemi-
spheres for this analysis
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and networks requires well-justified and reproducible meth-
ods for defining these regions and networks. In this context, 
functional localizers in fMRI have become invaluable tools, 
the most widely used comparing faces—arguably the most 
significant signal for human ecology—to non-face visual 
objects (Kanwisher et al. 1997; Kanwisher 2017; Grill-
Spector et al. 2017). An optimal face localizer is critical to 
define regions in the human adult brain to explore further 
functions such as facial identity recognition or facial emo-
tion decoding, but also to explore the neurodevelopment of 
this function (de Heering and Rossion 2015; Golarai et al. 
2007; Gomez et al. 2017; Scherf et al. 2007) and its impair-
ment following sudden onset or long-life brain dysfunction 
(e.g., Rossion et al. 2003; Avidan et al. 2014; Yang et al. 
2016). However, it is fair to say that even after 20 years of 
use and development of functional fMRI localizers, severe 
limitations in sensitivity, objectivity, and reliability remain, 
explaining a large fraction of the great variability across 
studies in this field of research. Most studies compare neural 
responses to well-segmented full-front faces to responses to 
segmented images of a single category, or a few categories 
of interest only (see Berman et al. 2010). Moreover, there is 
a trade-off in fMRI face localizers between, on the one hand, 
the tight control of systematic low-level stimulus confounds, 
in which face and nonface stimuli can be equalized for low-
level visual cues at the expense of sensitivity and general-
izability, and, on the other hand, the use of more natural 
stimuli at the expense of specificity (e.g., “the dynamic face 
localizer”, Fox et al. 2009; Yang et al. 2016; Zhen et al. 
2015). The present FPS-fMRI approach, partly inspired from 
frequency tagging in human electroencephalography (Norcia 
et al. 2015; Rossion et al. 2015), goes a long way towards 
resolving these issues.

Regarding sensitivity, the FPS-fMRI face localizer 
achieves much (i.e., twice) higher SNR in detecting face-
selective neural responses overall than a conventional face 
localizer matched for duration and number of face stimuli 
presented. This advantage was found in every individual 
brain tested in the study. Such a high sensitivity is espe-
cially important for studies with rare participants, such as 
brain-damaged patients, where the data have to be inter-
preted at the individual level (e.g., Fox et al. 2011; Freud 
et al. 2017; Rossion et al. 2003; Weiner et al. 2016). The 
increased SNR is due to both the stimulation paradigm and 
the model-free FFT analysis (Fig. 10). The stimulation rate 
is optimized to give brain regions just enough time to selec-
tively process each stimulus and to record a full category-
selective response before the next stimulus from the same 
category appears (Retter and Rossion 2016). It also maxi-
mizes the direct contrast between the category of interest, 
faces, and other stimuli, each face being forward- and back-
ward-masked by non-face objects in the continuous visual 
stimulation stream. Due to the long run duration, frequency 

resolution of the fMRI signal spectrum following FFT is 
extremely high (0.0025 Hz). Hence, while the broadband 
noise spreads across numerous frequency bins, all the signal 
of interest falls in a tiny frequency bin (0.111 Hz), provid-
ing extremely high SNR (Regan 1989). Increased sensitiv-
ity allows reducing acquisition time by a factor of two (see 
Supplemental Figure S7), providing much more room for 
further exploration of specific functions of these regions, 
and to disclose all or most relevant face-selective regions in 
individual brains. The significant clusters in the ATL in the 
vast majority of individual brains with FPS-fMRI, despite 
signal dropout making it difficult to localize face-selective 
responses with conventional fMRI paradigms in this region, 
further illustrate this point.

The conventional way of estimating the BOLD response 
amplitude relies on the same HRF model being used for 
different regions of the brain and for different individuals. 
However, since there is a substantial amount of variation of 
BOLD hemodynamic response across brain regions as well 
as across participants, a uniform HRF inevitably leads to 
erroneous estimates (Handwerker et al. 2004). This matter 
is even more serious for modeling hemodynamic response 
in higher level regions, since commonly used HRF models 
are usually validated from measurements of specific regions 
and stimulation, such as the primary visual cortex to sim-
ple visual stimuli (e.g., Boynton et al. 1996) or the primary 
motor cortex to finger-tapping (Buxton et al. 1998). In con-
trast, the model-free FFT analysis afforded by periodicity 
in the FPS-fMRI design leads not only to a more objec-
tive definition and quantification of a response of interest 
(i.e., amplitude exactly at the pre-defined frequency), but 
also a fair comparison of this response across different brain 
regions and participants. Note that a key difference with pre-
vious frequency-based fMRI analyses (Koenig-Robert et al. 
2015; McCarthy et al. 1994; Puce et al. 1995; Wang et al. 
2014, 2015) is that category-selective neural responses are 
directly reflected as amplitude of the stimulation frequency 
here, without post hoc subtraction procedure.

Importantly, our approach also achieves high test–retest 
reliability in localizing face-selective areas. Although reli-
ability is the pedestal of any scientific research, the results 
of fMRI research are generally less reliable than many 
researchers implicitly believe (Bennett and Miller 2010). 
Here, across the whole brain or within functionally defined 
face-selective regions, we achieve an average of 80–90% 
overlap of spatial activation across runs, which is to our 
knowledge the highest test–retest reliability observed in 
this field of research, and beyond (Bennett and Miller 2010; 
Berman et al. 2010; Duncan et al. 2009; Duncan and Dev-
lin 2011). This high reliability makes the current paradigm 
desirable not only for fundamental scientific research, 
but, importantly, for clinical purposes, such as presurgi-
cal functional localization (Weiner et al. 2016) and/or for 
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intervention studies where the participants or patients are 
tested multiple times at different time points (Dormal et al. 
2015; Weiner et al. 2016). This reliability is even more 
impressive considering that the specific exemplar images 
are selected randomly for each presentation, and thus not 
presented in the same order, or repeated exactly the same 
number of times in each run. Precisely, rather than attempt-
ing to independently define and compare abstract neural 
“representations” for faces and nonface objects, we attribute 
the high reliability of the approach to the measure of a pro-
cess, perceptual categorization of faces, which is repeatedly 
sampled across a wide variety of stimuli and contexts (i.e., 
non-face stimuli) within each run, increasing invariance, i.e., 
robustness, of the response of interest.

Critically, the increase in sensitivity afforded by the cur-
rent paradigm does not come at the expense of a decrease 
of specificity, which is often the case when natural stimuli 
vary substantially in terms of low-level properties (Fox et al. 
2009; see also Rice et al. 2014 and; Andrews et al. 2015) or 
in block designs with one-back tasks differing in difficulty 
and attentional resources between face and object images 
(see discussion in Rossion et al. 2012). In fact, overall, there 
are no more voxels activated in the FPS-fMRI paradigm than 
in the conventional paradigm with the same stimuli: the sig-
nificant activation increase in higher level regions such as 
the ATL, defined as face-selective in previous fMRI studies 
of face selectivity (Rajimehr et al. 2009; Nasr and Tootell 
2012; Collins et al. 2016) and human intracranial recordings 
(Puce 1999; Jonas et al. 2016) and considered as a key player 
in face perception, is mainly compensated by the lack of 
“face-selective” responses in the primary visual cortex with 
the FPS approach compared to the conventional localizer. 
Note that the exact same stimuli are used in both designs and 
FFT analysis per se does not account for the removal of low-
level visual cortex activation. Rather, removal of low-level 
visual confounds is due to the fast periodic stimulation para-
digm. This can be tentatively explained by the following. In 
a conventional block design, a small minority—say 10%—of 
images of the same category with specific low-level visual 
attributes (e.g., increased power in low spatial frequencies) 
could be sufficient to lead to average differences between 
(face and object) stimulation blocks. However, a random 
distribution of 10% of these stimuli across the various fre-
quency bursts of the stimulation sequence should not lead 
to a periodic response at 0.111 Hz. Moreover, with natural 
images as used here, populations of neurons responding to 
living things in general, for instance, would contribute to 
“face-selectivity” in a block design (or in studies comparing 
faces to houses or cars only, e.g., Berman et al. 2010; Loffler 
et al. 2005; Rossion et al. 2012). However, the periodic-
ity constraint in FPS-fMRI minimizes or even eliminates 
such confounds (Rossion et al. 2015) because each face 
image contrasts with different object images throughout the 

sequence, and the face bursts are made of a few (different) 
exemplars only. Hence, a subset of identical biased image 
contrasts would have to be systematically present in each 
face burst to lead to a periodic response due to such biases. 
Therefore, a major strength of the present approach is the 
ability to preserve naturalness of the images while removing 
low-level visual contributions, as demonstrated here by the 
absence of face-selective response when these images are 
phase-scrambled.

The principles of FPS-fMRI validated here with a func-
tional face localizer could be applied straightforwardly to 
refine our knowledge of the functions of these regions with 
respect to face identity and facial expression processing 
for instance (Calder and Young 2005; Haxby et al. 2000; 
Duchaine and Yovel 2015), to map cortical areas selectively 
coding for visual linguistic material (e.g., letter strings and 
words, Lochy et al. 2015) in the VOTC (Wandell 2011), or to 
other modalities such as auditory stimulation (Zatorre et al. 
2002). More generally, our approach is able to objectively 
track fast processes occurring in a dynamic visual stream 
even with a slow temporal resolution method such as fMRI. 
This is important for providing direct comparisons with neu-
ral signals obtained in similar paradigms used with other 
imaging modalities, such as (intracranial) electroencepha-
lography (Jonas et al. 2016), and also open new possibilities 
for defining functions with other low temporal resolution 
methods such as calcium imaging (Grienberger and Kon-
nerth 2012) in human and nonhuman brains.
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