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ARTICLE INFO ABSTRACT

Effective human interaction depends on our ability to rapidly detect faces in dynamic visual environments. Here
we asked how basic units of visual information (spatial frequencies, or SF) contribute to this fundamental brain
function. Human observers viewed initially blurry, unrecognizable natural object images presented at a fast 12 Hz
EEG rate and parametrically increasing in SF content over the course of 1 minute. By inserting highly variable natural
Human vision face images as every 8™ stimulus, we captured an objective neural index of face detection in participants' elec-
troencephalogram (EEG) at exactly 1.5 Hz. This face-selective signal emerged over the right occipito-temporal
cortex at <5 cycles/image, suggesting that the brain can — at a single glance — discriminate vastly different
faces from multiple unsegmented object categories using only very coarse visual information. Local features (e.g.,
eyes) are not yet discernable at this threshold, indicating that fast face detection critically relies on global facial
configuration. Interestingly, the face-selective neural response continued to increase with additional higher SF
content until saturation around >50 cycles/image, potentially supporting higher-level recognition functions (e.g.,
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facial identity recognition).

Introduction

Vision in the real world requires the human brain to rapidly transform
luminance input from the retina into meaningful and complex objects,
often in dynamic visual environments. Nowhere is this capacity more
striking than in the case of face detection, by which we mean the brain's
ability to rapidly discriminate faces from many other potential object
categories (i.e., to categorize a face as a face). There is enormous
evolutionary pressure for efficient face detection in humans, since it acts
as the mandatory gateway to higher-level perceptual face processing,
such as identity and emotion recognition (Besson et al., 2017). That is,
before you can know whether a face belongs to a friend or a stranger,
whether its expression is angry or happy, the visual system must first
categorize that stimulus as a face, rather than any other type of visual
object. Whereas human face detection is largely automatic (Hershler and
Hochstein, 2005) and can be achieved in just over 100 ms (i.e., at a single
glance, Crouzet et al., 2010; Rousselet et al., 2003), artificial face
detection systems still lag well behind human performance (Scheirer
et al., 2014; Viola and Jones, 2004; Yang et al.; Zhang and Zhang, 2010).

Indeed, despite tremendous progress in artificial face detection in recent
years (in particular thanks to deep learning approaches, see Yang et al.),
human observers still readily outstrip these systems, easily perceiving
faces that are far away (i.e., small), embedded in complex backgrounds,
or obscured by foreground objects (Lewis and Edmonds, 2003; Rossion
et al., 2015).

Despite the importance of this fundamental brain function, surpris-
ingly little is known about how basic units of visual information — spatial
frequencies (SFs), i.e., the spatial scale of luminance variations in an
image (Campbell et al., 1969; De Valois and De Valois, 1980) — support
the categorization of a face as a face. This contrasts with the richer sci-
entific literature concerning the role of spatial frequency in higher-level
face processing functions (Ruiz-Soler and Beltran, 2006), such as identity
(Goffaux et al., 2011; Gold et al., 1999; Nasanen, 1999; Ojanpaa and
Nasanen, 2003; Ramon et al., 2015), sex recognition (Khalid et al., 2013;
Schyns and Oliva, 1999), and emotion recognition (Gao and Maurer,
2011; Vuilleumier et al., 2003). Here we used an original electrophysi-
ological approach to i) determine the minimal amount of SF content
capable of driving robust face detection in the human brain (i.e., the
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detection threshold), and ii) characterize how face detection signals (i.e.,
face-selective brain activity) accumulate from this minimal threshold
onwards with the addition of finer scale information.

Since effective face detection in natural environments demands both
speed and accuracy despite highly variable and complex visual inputs, we
imposed these same constraints on the perceptual processes measured
here. To this end, we employed a dynamic visual stimulation paradigm to
objectively quantify neural discrimination between faces and a wide
array of other object categories presented very rapidly (Jacques et al.,
2016; Quek and Rossion, 2017; Retter and Rossion, 2016; Rossion et al.,
2015). In this paradigm, observers view highly variable natural object
images (e.g., plants, animals, buildings, artefacts, etc.) presented at a fast
periodic rate of 12 Hz (SOA = 83.33 ms), with face images interleaved at
regular intervals (1/8 images) (Fig. 1 and Movie 1) (Retter and Rossion,
2016; Rossion et al., 2015). To guard against face detection based on
simple low-level visual features, faces/objects are not segmented from
their natural backgrounds, and faces vary substantially in age, sex,
expression, as well as position, size, and viewpoint (Fig. 1; Fig. S1).
Together, the rapid presentation rate and high image variability emulate
the demands placed on the visual system by effective object categoriza-
tion in the real world (i.e., speed and high categorical diversity). In the
context of this dynamic image stream, a neural response occurring
exactly at 1.5Hz (i.e., 12 Hz/8) as captured with scalp electroencepha-
lography (EEG) provides an objective, experimentally pre-defined
marker for face detection (i.e., a face-selective neural index of the
perceptual categorization of faces amongst various object categories,
Retter and Rossion, 2016). Importantly, where previous electrophysio-
logical studies have often focused on individual, subjectively defined
components related to face detection (e.g., the N170, Collin et al., 2012;
Goffaux et al., 2003b; Halit et al., 2006), our approach here takes into
consideration the entire face-selective response a complex
multi-component waveform spanning several hundred milliseconds
(Retter and Rossion, 2016)° (see also Carlson et al., 2013; Cichy et al.,
2014; Nemrodov et al., 2016).

Supplementary video related to this article can be found at https://
doi.org/10.1016/j.neuroimage.2018.04.034.

In the present study, the SF content of this image sequence para-
metrically increased over the course of 1 min. Images initially appeared
blurry and indistinguishable, and progressively sharpened every 4s
(from 0.5 to 128 cycles per image, or cpi) until they became clearly
recognizable as faces and objects (see Movie 1). Importantly, this para-
metric filtering method does not merely decompose images into discrete
SF bands (e.g., low vs. mid vs. high SF bands) (Collin et al., 2012; Costen
et al., 1994; Gaspar et al., 2008; Goffaux et al., 2003b; Halit et al., 2006;
Nasanen, 1999). Rather, the progressive increase in low-pass filter cut-off
enables the quantification of cumulative integration of face information
from low to high SFs. In this way, this approach aligns with the presumed
coarse-to-fine accumulation of information in the visual system (Goffaux
et al., 2011; Hegdé, 2008; Morrison and Schyns, 2001; Rossion, 2014;
Sergent Elliset al, 1986); namely that coarse low SF information is
extracted before finer high SF details.

We pursued two goals with this experimental design: First, we aimed
to identify the minimal SF content capable of driving a significant face-
selective response, so as to shed light on the nature of the visual infor-
mation underlying early face detection (i.e., face vs. object discrimina-
tion). One possibility in this regard is that face detection is supported by a
holistic/configural template, wherein the presence of distinct individual
facial features is less relevant than the perception of a global integrated
structure (Caharel et al., 2013; Goold and Meng, 2016; Purcell and

3 Note that whether the approach does indeed capture the full face-selective
response depends critically on the face-presentation frequency employed, as
this reflects the SOA between consecutive faces and therefore the degree to
which they mask each other. We point the interested reader to our previous
work for a full discussion of this issue (Retter and Rossion, 2016).
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Stewart, 1988). If this is indeed the case, then extremely coarse visual
information, as in the early stages of our stimulation sequence, should be
sufficient to drive a face-selective response. Several lines of research
support this prediction. Firstly, categorizing a face as a face necessarily
precedes higher-order face processing such as identity recognition, which
itself can already be resolved at relatively low SFs (e.g., 8-12 cpi, Costen
et al., 1994; Gaspar et al., 2008; Nasanen, 1999). Moreover, face detec-
tion efficiency correlates with increased contrast sensitivity at low SFs
(e.g., 0.5 cycles per visual degree, or cpd, Owsley and Sloane, 1987), and
rapid face detection in the visual periphery and early face-selective
neural markers also appear to rely on such coarse information (Boucart
et al., 2016; Goffaux et al., 2003a,b, 2011; Halit et al., 2006). Finally,
despite having visual acuity limited to the very low SF range (Peterzell
et al., 1995), even 4-6 month old infants generate clear neural face
detection responses when viewing briefly presented natural faces in a
similar paradigm (de Heering and Rossion, 2015). An alternative possi-
bility is that face detection is critically contingent on the perception of
certain face parts (e.g., eyes) (Gava et al., 2008; Itier et al., 2007; Paras
and Webster, 2013; Rousselet et al., 2014). This would predict that the
face-selective response we measure here should not emerge until spatial
resolution is sufficiently high for these diagnostic features to be
distinguishable.

Second, regardless of the exact minimal SF content needed for face
detection, it remains unknown whether cumulatively increasing SFs
above this threshold still contribute to the face vs. object categorization
process. That is, if face detection can be achieved on the basis of very
degraded visual information, what do finer scales add to this process?
Existing work using parametric structure (phase) de-scrambling suggests
that the visual system is capable of generating a full face detection
response on the basis of only partial or degraded information (Ales et al.,
2012; Liu-Shuang et al., 2015). If low SFs suffice to generate a full face
detection response, despite high temporal constraints, then this response
should saturate immediately after the detection threshold. Alternatively,
in a challenging and dynamic visual environment, the visual system may
continue to accumulate additional higher SF content to refine the face
detection response. In that case, the point of saturation may be far away
from the detection threshold, with a potential increasing response
function between the two. Clarifying these outstanding issues by i)
identifying the spatial frequency threshold for face detection, and ii)
establishing whether and how the visual system integrates finer details,
will not only shed light on the neural basis of rapid, automatic face
detection in dynamic visual environments, but could also serve to inspire
and constrain computational models of face detection (Scheirer et al.,
2014).

Materials & methods
Participants

We tested 19 participants (11 females) in exchange for monetary
compensation. We excluded the data of three individuals who either did
not follow task instructions appropriately (1 participant) or whose EEG
recording contained excessive noise/muscular artefact (2 participants).
The final sample consisted of 16 participants (10 females, mean
age =22 + 2), of whom 12 also took part in an additional experiment
using full-spectrum images immediately prior to the main experiment
(see section below on Face detection of full-spectrum faces). All reported
to having normal/corrected-to-normal vision; none had a history of
neurological or psychiatric disorder. We obtained written informed
consent prior to testing in accordance with the guidelines of the
Biomedical Ethical committee of the University of Louvain (Belgian
Number: B403201111965).

Stimuli

Stimuli were greyscale images of 100 faces and 200 objects (e.g.,
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buildings, trees, animals, vehicles, etc.), sized to 256 x 256 pixels. All
faces and objects were left embedded in their natural backgrounds (i.e.,
unsegmented), and varied greatly in orientation, lighting, size, and
overall appearance (examples given in Fig. S1A). We verified that there
was no structural regularity in either category by separately averaging all
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face and object images and determined that no recognizable object or
face shapes could be distinguished (see Fig. S1B). Stimuli were displayed
at a viewing distance of 80 cm on a 120 Hz BenQ LED computer screen
and subtended 9.08° visual angle. In the face stimulus set, the average
rectangular region delimited by the forehead, cheekbones, and chin of

A Image presentation frequency = 12 Hz  Face presentation frequency = 1.5 Hz (1/8)
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Fig. 1. The dynamic visual stimulation paradigm. A) Images were presented using sinusoidal contrast modulation at a fast periodic rate of 12 Hz (ISI = 83.33 ms), so
that participants perceived a fast, continuous stream of images. Highly variable faces were interleaved with objects at fixed intervals throughout the sequence (1/8
images, i.e., 1.5 Hz). B) Schematic illustration of the coarse-to-fine stimulation with parametrically increasing SF content throughout the sequence (see also Movie 1),
with example images for the shaded SF steps on the left. Observers were instructed to press the spacebar as soon as they perceived a face in the sequence, while brain
activity was recorded with high-density EEG. Each sequence lasted 56 s, flanked at its start and end by an additional 4 s during which the maximum image contrast
gradually ramped up and down, respectively (total duration = 64 s, see Movie 1 for an example Face sequence). A total of 768 images (96 faces and 672 objects) were

shown during this time.
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the face subtended 3.56° x 4.61° visual angle (median values;
min = 2.09° x 2.52°, max = 6.74° x 9.04°), and thus occupied approxi-
mately 20% of the image surface (see Fig. S1C). Faces were positioned at
a median eccentricity of 1.69° visual angle relative to the center of the
image (min = 0.05°, max = 3.66°).

Full-spectrum face and object stimuli were low-pass spatial filtered at
14 logarithmic cut-offs (referred to here as SF Steps). We used logarith-
mic, rather than linear, cut-offs in order to maximize the sampling of low
SFs since this is i) where most of image energy is contained (Fig. S1B), ii)
where energy decays the fastest as a function of SF, and iii) where the
visual system is most sensitive to contrast (Ginsburg et al., 1984).
Fig. S1D presents these low-pass cut-off values with example images.
Since faces only occupy a fraction of the total image, we also indicate the
approximate SF cut-offs in terms of cycles per face width (cpf), corre-
sponding to the median cut-off estimate across the 100 face exemplars.
Following spatial filtering, we adjusted the luminance and contrast
values of the resulting images to match the mean values of the original
full-spectrum image set. Consequently, all 4200 (face and object) images
were equivalent in luminance and contrast both within and across the 14
SF Steps.

Design & procedure

Our design was similar to previous face categorization experiments
using fast periodic visual stimulation designs (Jacques et al., 2016; Retter
and Rossion, 2016; Rossion et al., 2015), and was implemented using
custom software written in Java. Each 56 s sequence consisted of 672
images shown through sinusoidal contrast modulation at a frequency of
12 images per second (12 Hz, SOA = 83.33 ms, Fig. 1A). Within a single
sequence, the SF content of images parametrically increased over the
course of 14 sequential SF Steps (4s per SF Step). In this way, the
sequence initially appeared blurry and gradually sharpened over the
course of the 56 s (see Fig. 1B & Movie 1). The sequence was flanked by
4-s pre- and post-ludes, which were repetitions of the first and last SF
Steps respectively. The depth of the contrast modulation ramped up
during the pre-lude and down during the post-lude to minimize blinks or
muscular artefacts elicited by the sudden appearance or disappearance of
flickering stimuli. The total duration of a full stimulation sequence
(sweeping across the 14 SF Steps and including the pre- and post-lude)
was 64s. A blue central fixation cross appeared between 2-5s before
sequence onset and remained superimposed on the periodically pre-
sented images until 2-5 s after sequence offset. Participants were asked to
maintain fixation on the central cross throughout the entire sequence.

There were two sequence types: Face sequences contained randomly
selected object images with face images interleaved at a fixed rate as
every gth image (i.e., 12Hz/8 = 1.5 Hz). In this way, there were 6 face
images contained within each 4 s SF step and 666.67 ms between
consecutive faces. The participant's task was to press the spacebar only
once per sequence, as soon as they thought that the sequence contained
faces. We instructed them to respond as quickly and as accurately as
possible. To ensure participants paid attention to this instruction, we also
included No Face sequences as Catch Trials, in which only randomly
selected object images appeared. Here the correct response was to
withhold the button press response entirely. Note that although object
exemplars did repeat more often than face exemplars did within each 64-
s sequence, critically, no exemplar was ever repeated within any given SF
Step. Additionally, previous work has shown that varying the ratio of face
and object repetitions does not influence the properties of the face-
selective response (Retter and Rossion, 2016).

In keeping with previous studies (e.g., Jacques et al., 2016), we ex-
pected that the stimulation in the critical Face sequences would elicit two
responses in the EEG spectrum: one at the image presentation frequency
(12 Hz), reflecting aspects of visual processing common to faces and
objects (referred to here as the common response), and one at the face
presentation frequency (1.5 Hz) reflecting face detection/categorization
processes (face-selective response). This latter 1.5 Hz response can only
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arise if the neural response evoked by each briefly presented face
consistently differs from that evoked by the many other object categories
appearing in the sequence. Note that these stimulation frequencies were
not chosen arbitrarily; a 12 Hz image presentation rate effectively limits
perceptual processing to a single glance per image (i.e., no saccades
possible), and 1.5 Hz face presentation frequency allows ample time (i.e.,
667 ms) between face presentations to allow the full face response to
unfold (~450ms in duration, Retter and Rossion, 2016). These two
frequencies are also highly dissociable in the frequency spectrum and in
terms of their associated scalp topographies. It should be noted that
although the appearance of faces in the sequence is strictly periodic, their
temporal predictability does not contribute to or drive the face-selective
response (Quek and Rossion, 2017).

EEG acquisition

Scalp EEG was acquired with a 128-channel BioSemi Active 2 system
(BioSemi, Amsterdam, Netherlands), with electrodes including the
standard 10-20 system locations and additional intermediate positions
(http://www.biosemi.com/headcap.htm, relabeled to more conven-
tional labels of the 10-20 system, see Fig. S1 in Rossion et al., 2015).
Continuous EEG was sampled at 512 Hz and electrode offset was held
below +50uV. Eye movements were monitored with four electrodes
placed at the outer canthi of the eyes and above and below the right eye.
During testing, digital triggers were sent via a parallel port from the
stimulation PC to the EEG acquisition PC at the start and the end of each
sequence, at the start of each SF Step, and at the onset of each 12 Hz
stimulation cycle (i.e., at the minima of the sinewave, or 0% contrast). A
trigger was also sent when the participant responded, allowing the
experimenter to monitor performance on the behavioral task online. The
experimenter manually initiated recordings only after the participant
showed a stable EEG trace (i.e., free from muscular and ocular artefact)
for at least 5s.

EEG preprocessing

EEG data analysis was carried out in Letswave5 (http://nocions.
webnode.com/letswave) running on MATLAB R2012b (MathWorks,
MA, United States). We band-pass filtered the continuous EEG data be-
tween 0.1 Hz-100 Hz (4th order zero-phase Butterworth filter) and then
downsampled it to 256 Hz for easier handling and storage. The data was
then segmented into 68 s epochs, including an extra 2 s before and after
each trial. For each participant, we used independent component analysis
(ICA) (Jung et al., 2000) with a square mixing matrix to remove the
component corresponding to eye blinks (identified by inspecting the
topographical distribution and the waveform). Next, we identified
artefact-ridden channels by visual inspection and replaced them using
linear interpolation of the 3 neighboring channels (less than 5% of
channels for each participant, see Picton et al., 2000). Finally, we
re-referenced the cleaned data to the average of the 128 scalp channels
and averaged each participant's trials for Face and Catch Trial (No Face)
sequences separately. The preprocessed data epochs were then cropped
again according to each SF Step (14 x 4 s epochs) and subjected to two
analyses in the frequency-domain.

EEG frequency-domain analysis

Face detection at the supra-threshold level

Since behavioral data indicated that participants detected faces well
before SF Step 10 (see behavioral results in Fig. 2), we considered the
face-selective EEG response within these “supra-threshold” SF Steps (SF
Steps 10-14) to be representative of a typical face-selective response (see
Retter and Rossion, 2016 for a description of a “full” face-selective
response). As such, we averaged across the top five SF Steps and
extracted the amplitude spectra from a Fast Fourier transform (FFT;
frequency resolution = 0.25 Hz). We then used this supra-threshold EEG


http://www.biosemi.com/headcap.htm
http://nocions.webnode.com/letswave
http://nocions.webnode.com/letswave

G.L. Quek et al.

A

Neurolmage 176 (2018) 465-476

o LIHEAAAEEEREEEEEE

077 117 275 422 6.46 15.17 23.24 35.6 54.54 83.55 128
804 SF cutoffs (cpi)
K
~ o 60
s
E F 401
z
20+
Y T T T T ) 1 T T T
1 2 3 4 10 11 12 13 14
SF Step
B 144 R T—— 128.0
124 Supra-threshold SF Steps }sa54 0
2 10+ -23.24 @
»n T
u 84 I -99 %
b | t ot d :
6 E 422 8
(1)
44 -1.8

T 1 T 1 1 I T
N O  H © O
SETLESS

QQQQQQ

IIIIIIII
uv;q;
AR A M

Participant

Fig. 2. Behavioral results. On each trial, participants had to press the spacebar as soon as they felt confident that the sequence contained face images. A) Frequency
distribution of the behavioral responses across SF Steps. Example face images are given for each SF step. B) Individual data. Dots = the mode SF Step at which in-

dividuals indicated “faces present”.
response to determine the relevant range of harmonics and
regions-of-interest (ROIs) for the main analysis.

To determine the range of relevant harmonics to consider for the
common and face-selective responses, we grand-averaged the amplitude
spectra across all participants and all scalp channels, and transformed the
resulting amplitude spectra into Z-scores: For each frequency bin, we
subtracted the mean amplitude of the surrounding frequency bins
(defined as three bins, i.e., 0.75 Hz, on either side of the bin of interest,
excluding the immediately adjacent bins*) from the amplitude at the bin
of interest, and divided the resulting value by the standard deviation of
the surrounding frequency bins. Using a conservative threshold of
z>2.57 (i.e., p<.005, one-tailed, signal > noise), we identified four
significant consecutive harmonics of the image presentation frequency
(i.e., 12, 24, 36, & 48 Hz) and seven significant consecutive harmonics of
the face presentation frequency (i.e., 1.5, 3, 4.5, 6, 7.5, 9, & 10.5Hz) in
the critical Face sequences. As expected, the Catch trial (No Face) se-
quences only yielded significant responses at harmonics of the image
presentation frequency (i.e., 12, 24, 36, & 48 Hz). As a final step, we
quantified the two responses of interest by summing baseline-corrected
amplitudes (amplitude at each frequency harmonic minus mean ampli-
tude of 6 surrounding frequency bins, see above) at the selected har-
monics of each. Henceforth, mentions of the common response and the
face-selective response will refer to these summed responses.

Since the scalp topography of the face-selective response typically
varies across individuals (Quek and Rossion, 2017; Retter and Rossion,
2016; Rossion et al., 2015), we optimized our quantification of each

4 Note that previous studies (Jacques et al., 2016; Retter and Rossion, 2016)
have used a larger range of surrounding bins made possible by the longer
stimulation sequences and therefore higher frequency resolution (0.017 Hz)
than we have here (0.25 Hz).
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Error bars are min-max range for each participant. Shaded region denotes supra-threshold SF range.

participant's face-selective response by defining ROIs at the individual
participant level. For each participant, the face-selective ROI was the
average of the four channels with the strongest supra-threshold face--
selective response. Although these channels were not necessarily
contiguous, they were generally located within the same posterior lat-
eral/medial occipital regions within the same hemisphere (except for
4/16 participants for whom the response was bilateral). We applied the
same approach to determine the individual ROIs for the common
response. Importantly, there was very little overlap between each par-
ticipant's common response ROI and face-selective ROI; only two par-
ticipants had one electrode which contributed to both ROIs.

Statistical analyses on these supra-threshold face-selective and com-
mon responses were carried out using planned pairwise t-tests with
Bonferroni-adjusted alphas.

Face detection as a function of increasing SF content

To evaluate the effect of increasing SF content on face detection, we
extracted the frequency spectra corresponding to each of the 14 SF Steps
for each participant and computed the common response and face-
selective response within their respective ROIs. To estimate the EEG
detection threshold (i.e., the SF Step at which the face-selective response
first emerged), we computed the 95% confidence interval (CI, calculated
across individual participants) around the mean face-selective response
amplitude at each SF Step, and identified the step at which this 95% CI
did not include zero. Conversely, the EEG saturation threshold was defined
as the SF Step for which the 95% CI around the mean face-selective
response overlapped with the mean face-selective response elicited by
full-spectrum face images (see below).

Considering that the face-selective response in such dynamic visual
stimulation designs is predominantly right-lateralized (Retter and Ros-
sion, 2016; Rossion et al., 2015), we also contrasted the impact of
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increasing SF content on the face-selective response across the left and
right hemispheres. Note that we do not aim to establish the emergence of
a lateralization effect by directly comparing responses between hemi-
spheres. Rather, the goal here was to evaluate the amount of SF content
required by each hemisphere for face detection, using the approach as
described above to define detection and saturation thresholds. To this end,
we created symmetrical left and right ROIs by averaging four
occipito-temporal channels on each side of the head (Fig. 4C). Note that
these bilateral ROIs were defined based on group-level data and were
identical across participants.

Face detection of full-spectrum faces

For 12 out of 16 participants, the main experiment was preceded by
four Face sequences that contained unfiltered, full-spectrum versions of
faces and objects. We used this complementary dataset to compare the
response obtained in our paradigm manipulating SF to the magnitude of
the face-selective response for images containing all available SFs (i.e.,
establish a baseline). Stimuli were identical to those used in the main
experiment (i.e., greyscale, 256 x 256 pixels), save that here the images
were unfiltered. Since participants would easily be able to detect faces in
these full-spectrum sequences, here the task was instead to monitor the
central fixation cross and to respond when it changed color (Quek and
Rossion, 2017; Retter and Rossion, 2016; Rossion et al., 2015). Analysis
of these full-spectrum sequences was highly similar to the main experi-
ment, save that the entire sequence was treated as a single 56 s epoch,
rather than being segmented into smaller 4s epochs. Naturally this
resulted in a higher frequency resolution (0.016Hz) in the
frequency-domain. Since the concordance between the main and
full-spectrum experiments was very high, both in terms of the range of
significant harmonics and topography of responses, we quantified the
common and face-selective responses using the same range of harmonics
and individual ROIs as in the main experiment. Responses were averaged
over the four trials for each participant and then grand-averaged across
participants.

Results
Face detection at the supra-threshold level

Given that participants' behavioral responses necessarily reflect the
summation of perceptual, decisional, and motor processes — and since in
the present context they could be initiated based on the appearance of a
single salient face in the sequence - behavioral response latencies
(relabeled with the corresponding SF Step during which the response
occurred) cannot accurately estimate the face detection threshold (i.e.,
minimal amount of SF content required by the brain to discriminate faces
and objects). Rather, they identify the SF steps during which participants
were confident of the presence of a face (i.e., a “supra-threshold” SF
range). Participants most often indicated “faces present” at SF Step 7,
corresponding to 6.46 cpi (interquartile range = 4.22-9.9 cpi, see Fig. 2).
Since participants typically responded “faces present” prior to SF Step 10,
we defined SF Steps 10-14 as supra-threshold steps. Note that false
positive responses were very rare (less than 4% of the total number of
catch trials across all participants) and accuracies were therefore not
analyzed.

Taking the supra-threshold SF steps identified in behavioral analysis
(SF Steps 10-14), we inspected the neural response at both the image
presentation frequency (12Hz) and the face presentation frequency
(1.5Hz). Where the former reflects visual processing common to faces
and objects, the latter is an objective marker for face detection, in that it
captures systematic deviations from the neural response evoked by both
stimulus types (Retter and Rossion, 2016; Rossion et al., 2015). Fig. 3A
shows the grand-averaged frequency spectrum for the average of all 128
channels for both sequence types. Applying our pre-defined significance
threshold of z > 2.57 (i.e., p < .005, one-tailed, signal > noise), both Face
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and Catch trial (No Face) sequences elicited significant responses at the
first four harmonics of the image presentation frequency (i.e., 12, 24, 36,
and 48 Hz). More importantly, Face sequences further elicited significant
peaks at the first 7 harmonics of the face presentation frequency (i.e., 1.5,
3, 4.5, 6, 7.5, 9, and 10.5 Hz), reflecting significant perceptual catego-
rization of faces amongst objects (de Heering and Rossion, 2015; Retter
and Rossion, 2016; Rossion et al., 2015).% At the group-level, the common
response (defined as the sum of the first 4 harmonics of 12 Hz) emerged
over medial occipital electrode sites, whereas the face-selective response
(defined as the sum of first 7 harmonics of 1.5 Hz) emerged over lateral
occipito-temporal electrodes. Here we observed a right hemispheric
advantage (see Fig. 3B), a signature of face-selective processing (Rossion
et al., 2015). The face-selective response was identifiable for all 16 ob-
servers tested. For each participant, we defined the four scalp channels
with the largest common response and the four channels with the largest
face-selective response as regions-of-interest (ROIs). Fig. 3C presents the
group-averaged common and face-selective responses in the two ROIs.
For the common response, we were specifically interested in whether the
Face and Catch trial (No Face) sequences would elicit different response
magnitudes, since this could suggest participants attended differently to
the two sequence types. This was not the case in either ROI (common
ROL: t(15) =.349, p=.732, d=.09; face-selective ROI: #(15)=.201,
p =.844, d=.05; Bonferroni adjusted o =.025). As expected from the
design, Face sequences elicited a significantly larger face-selective
response than did the Catch trial (No Face) sequences in both ROIs
(common ROL t(15)=7.07, p<.0001, d=1.77; face-selective ROL
t(15) =6.77, p < .0001, d = 1.69; Bonferroni adjusted o = .025).

Face detection as a function of increasing SF content

Having established the presence and scalp topography of a supra-
threshold face-selective response, we next examined how this response
emerged as a function of SF content. As shown in Fig. 4A, the face-
selective response gradually increased with increasing SF information
mainly over lateral (right) occipito-temporal regions. Averaging the face-
selective response within each participant's unique face-selective ROI,
the face detection threshold (defined as the first SF Step at which the 95%
CI did not include zero) was located at SF Step 6, corresponding to 4.22
cpi (or 1.66 cycles per face width, cpf, see Fig. 4B). Importantly, due to
the periodic nature of the face-selective response, this detection
threshold does not reflect detection of a single salient face exemplar, but
rather the point at which the brain is able to detect multiple variable
faces within the image stream (thereby generating a periodic EEG
response). As such, this estimate reflects face detection that has reached a
certain level of stability in the context of highly variable stimulus images
(see Fig. 6 for examples of faces at the detection threshold of 4.22 cpi).

Interestingly, the face-selective response profile we observed did not
saturate immediately after onset, but rather continued to increase across
sequential SF Steps before reaching plateau (see Fig. 4B). To determine
the point of saturation, we contrasted the face-selective response at each
SF Step with the face-selective response elicited by a full-spectrum
version of the experiment (tested on 12/16 participants, run before the
main experiment®). The full-spectrum experiment closely resembled the
Face condition of the main experiment, save that here the four

5 Harmonic responses of frequencies of interest arise since the periodic EEG
response is not purely sinusoidal, but rather a complex, multi-component
waveform (Norcia et al.,, 2015; Regan, 1989). For further discussion of the
quantification of harmonic responses see (Retter and Rossion, 2016).

6 We also ran the same analysis with the 12 participants who completed both
the main and full-spectrum experiments. Detection (4.22 cpi) and saturation
thresholds (35.36 cpi) identified in this secondary analysis were very similar to
those identified in the primary analysis (including all 16 participants in the main
experiment), leading to the same overall conclusions. We therefore report only
the latter analyses.
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Fig. 3. Frequency-domain data for the supra-threshold SF Steps (Steps 10-14). A) Grand-averaged FFT amplitude spectra (averaged across all 128 channels). Both
sequence types gave rise to a strong response at the image presentation frequency (12 Hz), however only Face sequences generated significant responses at the face-
presentation frequency (1.5 Hz) and its harmonics. B) Group-level scalp topographies for the common and face-selective responses. C) Common and face-selective
response magnitudes shown as a function of Sequence Type and ROI. Error bars are 95% confidence intervals (***p <.0001).

stimulation sequences contained only full-spectrum images (i.e., no
spatial filtering, for similar examples see Retter and Rossion, 2016).
Using the same 95% CI approach described above, we located the satu-
ration threshold of the face-selective response at SF Step 12, or 54.54 cpi
(21.41 cpf). Hence, while a minimum of 4.22 cpi was sufficient for
consistent face detection response, the visual system continued to inte-
grate relevant SF content until face images contained a higher level of
detail with at least 54.54 cpi (see Fig. 6 for face images at the saturation
threshold of 54.54 cpi). Importantly, the sigmoidal shape of this response
function was not a consequence of averaging across step-like profiles
with differing detection thresholds. Rather, all participants exhibited a
similar gradually increasing face-selective response profiles (Fig. 5). In
contrast, the face-selective response for Catch trial (No Face) sequences
did not systematically depart from the zero baseline at any point in the
stimulation sequence. Note that the common response, reflecting general
visual processing of both faces and objects, also increased gradually as a
function of SF content, although the profile was less steep and saturated
earlier at 23.24 cpi (see Fig. S2).

Given the right lateralization of the face-selective response at both the
group-level (Fig. 4A) and in the majority of individual participants
(Fig. 5), we further dissociated the right and left hemisphere response
functions (note that here the bilateral ROIs were composed of the same
channels for all participants). As is evident from the response topography
in Fig. 4A and the response functions in Fig. 4C, the face-selective
response emerged at an earlier SF Step over the right (4.22 cpi) rela-
tive to the left hemisphere (6.46 cpi). Moreover, the right hemisphere
response saturated at 35.60 cpi while the left hemisphere response never
quite reached saturation threshold. These results further underline the
fundamental role of the right hemisphere in high-level face perception.

Discussion

Here we employed a paradigm that directly indexes face-selective
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neural responses to assess how SF content drives perceptual face cate-
gorization/face detection. Our data establish two important findings.
First, even in a dynamic, highly variable visual environment, the human
brain can detect briefly presented faces among other objects on the basis
of very coarse visual information, i.e., minimal SF content of 4.22 cpi. At
this threshold, individual local face parts are virtually invisible, such that
faces are discriminated from objects based on only their distinctive global
structure (Fig. 6). Second, the neural face detection response continued
to increase well beyond the detection threshold, reaching saturation at a
much finer spatial resolution of 54.54 cpi. Thus, while very low SFs are
sufficient to achieve single glance face (vs. object) categorization,
reaching a full, stable face-selective response requires the progressive
extraction of additional higher SF content.

Face detection based on ultra-coarse visual information

That face detection emerged here on the basis of very degraded visual
information, i.e., SF content <5 cpi (corresponding here to < 0.5 cpd;
Fig. S1D), is consistent with previous studies highlighting the importance
of low SFs for face detection (Goffaux et al., 2003a, 2011; Owsley and
Sloane, 1987). This finding is also in agreement with fast face detection
observed in 4-6 months old infants (de Heering and Rossion, 2015), for
whom only coarse visual information is available at that stage of devel-
opment (i.e., visual acuity threshold of ~2 cycles per degree, Peterzell
et al., 1995). Importantly, this immature face-selective response in babies
is strongly right-lateralized, a hallmark of specialised face processing
(Bouvier and Engel, 2006; Jonas and Rossion, 2016; Sergent et al., 1992).
Hemispheric lateralization is similarly evident in our data, in that
face-selective responses emerged based on coarser information (4.22 cpi)
over the right hemisphere than over the left hemisphere (6.46 cpi, see
Fig. 4C). This observation thus provides rare and original support for the
long-standing view that the right hemispheric specialisation for faces,
which emerges early in development (Adibpour et al., 2018; de Heering



G.L. Quek et al. Neurolmage 176 (2018) 465-476

Face-selective response as a function of spatial frequency content

A Spatial frequency (cpi)
6.46 9.90 15.17 23.24 35.60 54.54 83.55

0000888657700

Individual

.: 13 i i' color scales i

B 451 Individual face-selective ROIs ‘v

44 Full-spectrum face-selective response T

3.5

Face

———

Catch
(No Fice) |

Baseline-corrected amplitude (uV)

05
050 077 117 180 275 422 646 9.90 15.17 23.24 35.60 54.54 83.55 128

C 41 Group-level right vs. left ROIs

3.5 ‘ - -
Full-spectrum face-selective responses
3 -

2.5+

24

1.5

14 E - Right

Left

Baseline-corrected amplitude (uV)

050 077 117 180 275 422 646 990 1517 2324 3560 5454 8355 128

HHannnnaEEEEEEEE

Spatial frequency (cpi)

(caption on next page)

472



G.L. Quek et al.

Neurolmage 176 (2018) 465-476

Fig. 4. The face-selective neural response as a function of increasing SF content. A) Top row: Topographical distribution of the face-selective response as a function of
SF Step in the Face sequences, displayed on a common color scale. Bottom row: face-selective response topography at SF Steps near the detection threshold, displayed
on individual color scales reflecting the maximum of each SF Step. B) The face-selective response, averaged within individually-defined face-selective ROIs, as a
function of SF Step. Error bars represent 95% ClIs. We defined the detection threshold (open arrow) as the first SF Step at which the 95% CI did not include zero. The
saturation threshold (filled arrow) was the point at which the 95% CI included the face-selective response elicited by full-spectrum (unfiltered) images (solid black
line). C) The face-selective response as a function of SF Step shown separately for the left and right hemispheres (channels composing the ROIs shown on the right,
identical for all participants). Note that the detection threshold was earlier in the right hemisphere (red open arrow) than the left hemisphere (blue open arrow).

Responses over the left hemisphere also do not appear to quite saturate.

and Rossion, 2015; de Schonen et al., 1989), is linked to low SF infor-
mation sensitivity (Sergent and Weiskrantz, 1988).

What kind of information carried at this low spatial scale (i.e., <5 cpi)
does the visual system rely on to detect faces amongst objects? From an
image statistics perspective, natural face images contain more energy in
the lower SF bands than do object images (see Fig. S1B, also Torralba and
Oliva, 2003). However, while some studies have suggested that spectral
amplitude differences alone drive fast face vs. object categorization, this
has only been demonstrated for binary discriminations (e.g., face vs. car,
Crouzet and Thorpe, 2011; Honey et al., 2008). In contrast, the face
detection response recorded here reflects a selective neural response
resulting from multiple comparisons to a wide range of object categories,
both living and non-living (Fig. 1; Fig. S1A). Hence, this response most
likely depends on phase information (i.e., structure) at this low spatial
scale. Indeed, when such a large number of variable visual categories are
presented in a full-spectrum dynamic paradigm as used here,
phase-scrambling the images eliminates the occipito-temporal face
detection responses (de Heering and Rossion, 2015; Gao et al., 2017;
Gentile et al., 2017; Rossion et al., 2015). Assuming it is indeed structural
information at this coarse scale that underpins face detection/categori-
zation, an outstanding question is whether structural cues at a local (i.e.,
features) or global level are the most relevant for this visual discrimina-
tion. Given that local facial features (e.g., an eye, a nose, a mouth, etc.)
are not clearly distinguishable in the images at the detection threshold
(see Fig. 6) — and would be even less discernible at the rapid presentation
rate we use — it would seem that at the point of emergence, face detection
depends predominantly on the global face structure (Goffaux and Ros-
sion, 2006; Sergent Elliset al, 1986). While our findings do not rule out
the role of local face parts for detecting faces, they do suggest that such
information might be less diagnostic and robust than global face struc-
ture in circumstances where the image quality or the visual input is
impoverished, for example, in the visual periphery (Boucart et al., 2016)
or at a distance. This conclusion has important implications for artificial
face detection systems, which indeed are often based on specific feature
detectors (i.e., eye, nose, mouth, hair) and known to struggle with
degraded or very small face images (Yang et al.; Zhang and Zhang, 2010).

An interesting possibility regarding the global structural information
contained at the coarse scale around the detection threshold, is that it
captures the minimum global luminance variation necessary for
perceiving internal face-like structure. In our design, <5 cpi corresponds
to approximately 1.5 cpf (see Fig. S1D), which could be sufficient to
evoke a global dark-light-dark pattern representing contrasting facial
features (e.g., eye-nose-eye or eyes-nose-mouth). The view that ordinal
contrast relationships between facial features are critical for face
perception has been suggested previously (Dakin and Watt, 2009; Gilad
et al., 2009). Indeed, not only does reversing the contrast relationships in
face images hamper face detection (Lewis and Edmonds, 2003; Liu-Sh-
uang et al., 2015), but this deleterious effect is particularly salient at
lower SFs (Hayes et al., 1986). Although this is beyond the scope of this
study, whether such internal contrast relationships do indeed drive face
detection, and whether the face detection system is tuned particularly to
contrast patterns in one cardinal direction (i.e., horizontal vs. vertical,
Goffaux and Dakin, 2010; Goffaux et al., 2016), are testable hypotheses
that warrant further investigation with the approach introduced here.

Since effective perceptual categorization in real world vision de-
mands both speed and accuracy despite complex and varied visual input,
a valid and relevant estimate of the minimum SF content capable of
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driving face detection in the human brain can only be obtained if face
categorization processes are measured whilst subject to these same de-
mands. By using a rapid image presentation rate (Retter and Rossion,
2016), we were able to both mimic the impressive speed of human face
detection (Crouzet et al., 2010; Rousselet et al., 2003) and present a very
large number of individual exemplars from many different categories,
approximating the richness and categorical diversity of real world visual
environments. In this context, using a large set of highly variable faces is
critical, as it ensures that the periodically evoked 1.5 Hz response reflects
consistent detection of faces despite broad variability in lighting, posi-
tion, viewpoint, size, age, sex, etc. (i.e., an invariant response to multiple
exemplars). As such, the electrophysiological face detection threshold
reported here cannot have arisen based on the detection of a single,
particularly noticeable face, but rather reflects the minimum SF content
required for consistent perceptual discrimination of highly variable faces
amongst many different object categories. This is in contrast with
behavioral detection thresholds, which are vulnerable to influence from
both salient exemplars and observer confidence thresholds related to task
and instruction (e.g., “Respond as fast as possible when you see a face” vs.
“Respond when you are sure you see a face”).” Moreover, since faces and
objects in our design remain embedded in their natural backgrounds
(rather than isolated against artificial or homogenous backgrounds,
Collin et al., 2012; Goffaux et al., 2003a), the face detection threshold
estimated here also encompasses the complex process of figure-ground
segregation required in natural vision (Regan, 2000).

Contribution of higher SFs to face detection

While extremely coarse SF content was sufficient to drive face
detection, the face-selective response observed here continued to in-
crease until images reached a much higher resolution (>50 cpi, or >6 cpd
and >20 cpf; Fig. S1D), suggesting that the cortical visual system pro-
gressively integrates additional SF content. The saturation point we es-
timate here indicates the contribution of a higher range of SFs than has
previously been reported for face detection (e.g., 22.63 cpi in Collin et al.,
2012). This difference may relate to how we evaluated the contribution
of SFs using a cumulative SF manipulation, instead of considering each SF
band separately. However, we would argue that examining the role of
higher SFs in the context of lower SFs, rather than in isolation (as is the
case in bandpass filtering), is a more ecological approach for under-
standing how spatial frequency processing underpins perception of
high-level stimuli. That is, while the visual system never encounters
high-pass filtered stimuli in the real world, it regularly deals with
low-resolution stimuli that gradually increase in SF content (e.g., a face
seen in the distance will be blurry, but will become clearer/sharper as
you approach it). Moreover, fine lines that define contours of facial
features may have a stronger influence on perception when overlapped
with low and middle SFs that define global structure, compared to when
they are shown against a uniform background.

Since we manipulated SF content through cumulative low-pass

7 Note that although a slower presentation rate or a more homogenous face
stimulus set (e.g., segmented images with the same viewpoint/position/size)
could perhaps be associated with an even lower detection threshold, the rele-
vance of such a threshold to perceptual categorization of faces in more
demanding, naturalistic settings would be unclear.
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Fig. 5. The face-selective response function for each individual participant. Topographies on the left reflect each participant's face-selective response averaged across
the supra-threshold SF Steps (used to define individual face-selective ROIs, see Methods). The line-plots show the face-selective response as a function of SF Step
averaged within each participant's face-selective ROI. Solid/dashed lines are response profiles elicited by the Face and Catch trial (No Face) sequences respectively; the
latter provides a reference for individual background EEG noise. Note that despite large variability in response topography and magnitude, participants showed
comparable detection thresholds and a similar gradual increase of the face-selective response as a function of SF content.

filtering (rather than bandpass filtering), our approach also simulates the
coarse-to-fine processing fundamental to high-level visual perception
(Goffaux et al., 2011; Hegdé, 2008; Morrison and Schyns, 2001; Rossion,
2014; Sergent Elliset al, 1986). Within this framework, our results sug-
gest that the human brain is capable of extracting higher SF content
contained in the later part of the stimulation sequence within the very
brief presentation duration of each image (83.33 ms). Again, this prop-
erty of high SF processing might only be evident when lower SF face
information is already present. Related to this, we cannot exclude the
possibility that the extraction of even higher SF content (>50 cpi) re-
quires a longer presentation duration than the current one (Goffaux et al.,
2011). If so, running the current experiment at a slower temporal fre-
quency (e.g., 6 Hz, as in de Heering and Rossion, 2015; Rossion et al.,
2015) could potentially show both a continued increase of the
face-selective response to filtered images until the last SF Step (128 cpi),
as well as increased face-selective responses to full-spectrum images.

A relevant question here is why the visual system would continue to
accumulate face-selective information within higher SF bands beyond
the minimal SF content necessary for face detection. One possibility in
this regard is that such evidence accumulation may progressively fine-
tune the matching between degraded face inputs (especially those in
more atypical positions/viewpoints) to internal face templates. In this
context, these higher SFs may carry critical information for the extraction
of facial emotion or identity (e.g., Ramon et al., 2015).

Caveats & limitations

It should be noted that we do not claim that the detection and satu-
ration thresholds reported here are specific to faces as a category. It could
be that these threshold values and the gradual increase until saturation
might still be present if another category (e.g., houses or limbs, see
Jacques et al., 2016) were presented periodically in the stimulation se-
quences. Indeed, it would be interesting to compare these characteristics
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of SF sensitivity across ecologically relevant categories. However, given
that the response we measure here is, by design, selective only for faces,
this possibility is beyond the scope of the present study.

One possible limitation of the design here concerns task specificity.
The electrophysiological threshold was obtained while participants
completed an explicit behavioral face detection task (“Respond as soon as
you think this sequence contains faces”). Nevertheless, we would fully
expect that the main conclusion - that faces can be detected at extremely
coarse scales based on global structure — would still be valid even in the
absence of such an explicit task. Indeed, in line with previous work, the
results from our full-spectrum experiment show that a face-related task in
itself is not necessary to obtain a robust measure of face categorization
(Jacques et al., 2016; Quek and Rossion, 2017; Quek et al., 2018; Retter
and Rossion, 2016; Rossion et al., 2015). More importantly, existing
evidence suggests that explicitly attending to faces mainly engages
non-essential, supplementary processes, but has little effect on the core
processes involved in face detection (Quek et al., 2018). Indeed, selective
attention to faces predominantly increases response amplitude over the
left, rather than the right, hemisphere (Quek et al., 2018). Hence, while
we would predict that the electrophysiological response profile and
detection threshold would be largely similar in the context of an
orthogonal behavioral task, we could potentially observe stronger right
lateralization effects (i.e., larger offset in the detection threshold between
right and left hemispheres).

Conclusions

The present findings undermine the view that face-selectivity in the
human brain begins with identification of local features. Indeed, the face
detection response emerged here based on coarse global facial structure
alone, i.e., in the absence of distinguishable local facial features, and
gradually increased with finer detail integration. These findings shed
new light on both face detection and high-level perceptual categorization



G.L. Quek et al.

Detection Threshold
(4.22 cpi/ 1.66 cpf)

Neurolmage 176 (2018) 465-476

Saturation threshold
(54.54 cpi/ 21.41 cpf)

Fig. 6. Twelve example faces shown at the detection (left) and response saturation thresholds (right). Note that at the point in the sequence at which face detection
emerges, the global face configuration is evident where individual features are not. During the experiment, images were viewed from 80 cm at a size of 12.7 x 12.7 cm,
such that each subtended 9.08° visual angle. See Fig. S3 in supplemental materials for examples of object images at the detection and saturation thresholds

(cpi = cycles per image; cpf = cycles per median face width).

in general, and open up multiple avenues for future investigation. The
ultra-coarse face detection threshold reported here agrees with recent
evidence for fast (i.e., single-glance) face detection in human infants (de
Heering and Rossion, 2015), which is presumably based on very low SF
content. If so, then testing infants with a passive viewing task (as in de
Heering and Rossion, 2015) should yield a similar detection threshold to
that reported here, but a much lower saturation threshold that increases
as sensitivity to higher SFs develops with age. Our approach is
well-suited for investigating such developmental trajectories, as it can
capture perceptual processing even in the absence of an explicit
face-related task, enabling the same quantification of face detection
processes from infancy through to adulthood. Moreover, since the
approach enjoys a very high signal-to-noise ratio, it could also readily be
applied to a more in-depth examination of inter-individual variability for
face detection in adults. Finally, the response profile we observed here, in
which coarse SFs are capable of driving the face detection response,
while finer details progressively refine it, could serve to both inspire and
constrain computational models of face detection (Scheirer et al., 2014).
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