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Abstract 47 

Voices are arguably among the most relevant sounds in humans’ everyday life, and several studies have 48 

suggested the existence of voice-selective regions in the human brain. Despite two decades of research, 49 

defining the human brain regions supporting voice recognition remains challenging. Moreover, whether 50 

neural selectivity to voices is merely driven by acoustic properties specific to human voices (e.g. 51 

spectrogram, harmonicity), or whether it also reflects a higher-level categorization response is still under 52 

debate. Here, we objectively measured rapid automatic categorization responses to human voices with 53 
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Fast Periodic Auditory Stimulation (FPAS) combined with electroencephalography (EEG). Participants were 54 

tested with stimulation sequences containing heterogeneous non-vocal sounds from different categories 55 

presented at 4 Hz (i.e., 4 stimuli/second), with vocal sounds appearing every 3 stimuli (1.333 Hz). A few 56 

minutes of stimulation are sufficient to elicit robust 1.333 Hz voice-selective focal brain responses over 57 

superior temporal regions of individual participants. This response is virtually absent for sequences using 58 

frequency-scrambled sounds, but is clearly observed when voices are presented among sounds from 59 

musical instruments matched for pitch and harmonicity-to-noise ratio. Overall, our FPAS paradigm 60 

demonstrates that the human brain seamlessly categorizes human voices when compared to other sounds 61 

including matched musical instruments and that voice-selective responses are at least partially 62 

independent from low-level acoustic features, making it a powerful and versatile tool to understand human 63 

auditory categorization in general. 64 

 65 

 66 

Significance statement 67 

Voices are arguably among the most relevant sounds we hear in our everyday life, and several studies have 68 

corroborated the existence of regions in the human brain that respond preferentially to voices. However, 69 

whether this preference is driven by specific acoustic properties of voices or if it rather reflects a higher-70 

level categorization response to voices is still under debate. We propose a new approach to objectively 71 

identify rapid automatic voice-selective responses with frequency tagging and electroencephalographic 72 

recordings. In four minutes of recording only, we recorded robust voice-selective responses independent 73 

from low-level acoustic cues, making this approach highly promising for studying auditory perception in 74 

children and clinical populations. 75 

 76 

 77 
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1. Introduction 94 

 Voices of conspecifics are arguably among the most relevant sounds we hear in our everyday life: 95 

they do not only carry speech, but also convey a wealth of information about the speakers such as their 96 

sex, age, emotional status, identity, trustworthiness, etc. (Belin et al., 2004). Regions in the human brain 97 

located along the bilateral superior temporal sulcus (STS) respond more to human voices than to other 98 

sounds (“Temporal Voice Areas”, TVAs), playing a key role in voice recognition (Belin et al., 2002, 2000). 99 

However, whether this selectivity is fully accounted for by specific acoustic properties of voices (Moerel et 100 

al., 2012; Ogg et al., 2019; Staeren et al., 2009), or if it also reflects a higher-level categorization response 101 

beyond these low-level auditory properties is still under debate. This question has been previously 102 

addressed through careful choice and design of acoustic stimuli (Agus et al., 2017; Belin et al., 2002; Levy et 103 

al., 2003) and sophisticated signal analyses (Moerel et al. 2012; Giordano et al. 2013; Leaver & Rauschecker 104 

2010), with results sometimes challenging the notion of brain regions dedicated to the abstract encoding of 105 

voices (Ogg et al., 2019; Santoro et al., 2017). For instance, regions identified as voice-selective present a 106 

response bias to low frequencies typical of voices, even when responding to tones (Moerel et al., 2012), 107 
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and portions of auditory cortex are sensitive to the degree of harmonic structure present in both artificial 108 

sounds and in human vocalizations (Lewis et al., 2009). 109 

 The approaches used so far to delineate voice-selectivity in the human brain, mostly relying on 110 

functional Magnetic Resonance Imaging (fMRI) or event-related potential recordings with 111 

electroencephalography (EEG), present limitations that hinder the characterization of a putative high-level 112 

voice-categorization response. For instance, these methods usually imply the subtraction between neural 113 

responses elicited by voices and control sounds which occurred at different times, or the regression of 114 

parameters linked to low-level properties of sounds, when in fact the subtracted components might be a 115 

part of the expression of a response to voices (Frühholz and Belin, 2018).  116 

 Here we shed light on the nature of voice-selective responses in the human brain by proposing a 117 

new approach to identify these automatic responses objectively and directly (i.e. without 118 

subtraction/regression). This approach relies on electroencephalographic recordings and, more specifically, 119 

on “EEG frequency tagging” (Regan 1989). Frequency tagging builds on the principles of so-called steady-120 

state evoked responses: under periodic external stimulation, the brain region encoding that input responds 121 

at the exact same stimulation frequency (Norcia, Appelbaum, Ales, Cottereau, & Rossion, 2015 for review). 122 

We developed a Fast Periodic Auditory Stimulation (FPAS) paradigm adapted from studies in vision, in 123 

particular to study face (Retter and Rossion, 2016; Rossion et al., 2015) and letter/word categorization 124 

(Lochy et al., 2015). Specifically, participants listened to sequences of heterogeneous sounds presented at a 125 

periodic rate of 4 Hz. Critically, each third sound presented in the sequences was a (different) human voice 126 

excerpt, so that voices were presented at a periodic rate of 1.333 Hz. In the EEG frequency domain, a 127 

response at the sound presentation frequency would reflect shared processes between all sounds, while a 128 

putative activity at the voice presentation rate would emerge only if the participant’s brain successfully 129 

discriminates human voices from other sounds and generalizes across all the diverse vocal samples 130 

presented (to maintain periodicity). To further assess whether low-level properties alone could elicit voice-131 

selective responses, we included a second stimulation sequence with identical periodicity constraints using 132 

the same sounds but frequency-bins scrambled (Dormal et al., 2018) to preserve the overall frequency 133 

content of the original sounds while disrupting their harmonicity and intelligibility. In a second experiment, 134 
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we implemented a sequence presenting voices among musical instrument notes that were matched for 135 

pitch, harmonicity-to-noise ratio (HNR) and spectral center of gravity to control for frequency content of 136 

the sounds, harmonicity and within category homogeneity (Belin et al., 2011, 2002).  137 

In summary, the goal of the present study was both conceptual and methodological. We aimed to 138 

develop a FPAS paradigm combined with EEG to test whether and to which extent voice-selective 139 

responses are partially independent from low-level acoustic features. Since FPAS provides a marker for 140 

categorization that is objective, direct and does not require overt responses to voices from the participants, 141 

we expect our observations to hold significant value for further characterization of the nature of voice-142 

selectivity in the human brain. 143 

 144 

2. Materials and methods 145 

 146 

2.1 Experiment 1 – Voice versus object sounds 147 

 148 

 2.1.1 Participants 149 

EEG was recorded in twenty participants (age range 19-26 years, 10 female) in experiment 1. Data 150 

from four participants were excluded due to the presence of EEG artefacts. All participants were right-151 

handed and reported normal or corrected to normal vision, normal hearing and no history of psychiatric or 152 

neurological disorders. The experiment was approved by the local ethical committee of the University of 153 

Louvain (Project 2016-25); all participants provided written informed consent and received financial 154 

compensation for their participation. 155 

2.1.2 Stimuli 156 

 Individual sounds used to create the standard sequences were 250 ms long, leading to a base 157 

stimulation frequency of 4 Hz (1/250ms) and a target frequency of 1.333 Hz (4Hz/3: vocal stimuli presented 158 

each third sound) and were selected in an effort to be as heterogeneous and variable as possible. We 159 

selected 137 non-vocal stimuli including environmental sounds (e.g. water pouring, rain), musical 160 

instruments, sounds produced by manipulable and non-manipulable objects (e.g. telephone ringing, 161 
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ambulance siren). We selected 55 vocal stimuli including speech and non-speech vocalizations pronounced 162 

by speakers of different sex, age and emotional states. Stimuli were extracted from various sources 163 

including online databases, extracts from audiobooks and the Montreal Affective Voices dataset (Belin et 164 

al., 2008). These stimuli were then frequency scrambled using the method described in Dormal et al. 2018 165 

to create the scrambled sequences. Specifically, we applied a fast Fourier transformation to vocal and non-166 

vocal sounds and created frequency bins of 200 Hz. Within each of these frequency windows, we shuffled 167 

the magnitude and phase of each Fourier component. We then performed an inverse Fourier transform to 168 

the signal and then applied the original sound envelope to the scrambled sound. As a result, the scrambled 169 

sounds have frequency content and spectral-temporal structure (change of energy of some frequencies 170 

over time) that are almost identical to that of the original stimuli (Figure 1C). However, the harmonicity is 171 

altered and the intelligibility of the stimuli is disrupted as confirmed by the behavioral experiment 172 

(experiment 3, Figure 5). All sounds were equalized in overall energy (RMS) and faded-in and –out with 10 173 

ms ramps in order to facilitate individual sounds segregation and avoid clicking. 174 

2.1.3 Procedure   175 

 A schematic representation of the experimental design is shown in Figure 1B. Sounds of the same 176 

duration were presented one after another to create periodic auditory sequences. In particular, sounds 177 

were presented such that each third sound was a human voice. Vocal and non-vocal samples were selected 178 

from various sources and were as heterogeneous as possible to represent the variability characteristic of a 179 

sound category (and thus also naturally increasing the variability of low-level acoustic features). No 180 

auditory category other than voice was presented periodically. Participants listened to two different 181 

sequence types that were created to measure voice selectivity using naturalistic stimuli (standard 182 

sequence) and to control for low-level acoustic confounds (i.e. frequency content, scrambled sequences). If, 183 

at the target (voice) rate, the standard and the scrambled sequences evoke responses that are 184 

quantitatively (amplitude of the response) and qualitatively (topographical map, pattern of harmonics) 185 

similar, it would indicate that we are interpreting as voice-selective responses that are elicited by frequency 186 

content alone. Each stimulation sequence was 64 s long, including 2 s of fade-in and -out during which the 187 

presentation volume raised gradually from 0 to the maximum at the start of the sequence, and vice versa 188 
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at the end of the sequence. Fading-in and –out were introduced to avoid abrupt movements that the 189 

sudden onset of the sequences could have provoked and that would have introduced artefacts in the data. 190 

Sequences for both conditions were presented four times in a pseudorandomized order. Individual 191 

sequences with a new pseudo-randomized order of stimulus presentation were generated before testing 192 

for each repetition and for each individual participant in an effort to increase generalization; all sequences 193 

played during the testing therefore constitute unique exemplars that share presentation parameters (base 194 

and target frequencies) and the sounds which were used to build them, but systematically presenting them 195 

in different orders in each sequence and each participant. During testing, participants were asked to 196 

perform an orthogonal non-periodic task: they had to press a button whenever they heard a sound that 197 

was presented at a lower volume as compared to the volume of the other sounds in the sequence. Volume 198 

reduction was obtained by decreasing the sounds’ root mean square values of a factor of 12.5. Each 199 

sequence contained six attentional targets (including both vocal and non-vocal sounds) that were 200 

introduced in a pseudorandomized order (excluding fade-in and -out period at the start of the sequence). 201 

Participants were required to listen to the sequences and perform the task blindfolded sitting at 90 cm 202 

distance from the speakers.  203 

2.1.4 EEG acquisition   204 

 The EEG was recorded with a Biosemi Active Two system 205 

(https://www.biosemi.com/products.htm) with 128 Ag-AgCl active electrodes at a sampling rate of 512 Hz. 206 

Recording sites included standard 10-20 system locations as well as intermediate positions (position 207 

coordinates can be found at: https://www.biosemi.com/headcap.htm). The magnitude of electrode offset, 208 

referenced to the common mode sense (CMS), was held below r50 mV.  209 

2.1.5 Analysis 210 

 Data analysis was performed using the Letswave5 toolbox 211 

(https://github.com/NOCIONS/Letswave5) and the FieldTrip toolbox (Oostenveld et al., 2011) running on 212 

Matlab_R2016b (MathWorks, USA), custom-build scripts in Matlab_R2016b and RStudio.  213 

2.1.6 Pre-processing 214 

 A fourth order Butterworth band-pass filter with cut-off values of 0.1-100 Hz was applied to the 215 
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raw continuous EEG data of each participant. Electrical noise at 50 Hz, 100 Hz and 150 Hz was attenuated 216 

with a FFT multi-notch filter with a width of 0.5 Hz. Data were then downsampled to 256 Hz to facilitate 217 

data handling and storage. Subsequently, data were segmented into 69 s long epochs (we will use the term 218 

epoch in the analysis sections to refer to the EEG data relative to one sequence of stimulation) to include 2 219 

s before the onset of the fade-in and 3 s after the offset of the fade-out of the stimulation sequences. At 220 

this stage, after visual inspection of the data, four subjects were excluded from further analysis as their EEG 221 

trace was highly contaminated by artefacts. In the remaining sixteen participants, noisy channels were 222 

linearly interpolated with the closest neighboring channels (three/four, considering electrodes representing 223 

the full area around the interpolated one). This procedure was carried on six participants with no more 224 

than 5% of the electrodes (Bottari et al., 2020; Retter et al., 2020) being interpolated in each participant 225 

(mean number of channels interpolated considering all sixteen participants is 1, range: 0-6; of the channels 226 

interpolated across the six participants, 6 were posterior-occipital electrodes, 2 central parietal, 1 central, 1 227 

temporal, 1 fronto-temporal, 4 fronto-central and 1 anterior-frontal). The same analyses performed on the 228 

ten participants on which no channel interpolation was performed and on the entire group (with 229 

interpolation) led to very similar results. Epochs that presented multiple artefacts after channel 230 

interpolation were removed, with no more than one epoch per condition per participant being excluded. 231 

All one hundred twenty-eight EEG channels were then re-referenced to the common average of all 232 

electrodes. 233 

2.1.7 Frequency domain analysis 234 

 Considering the frequency resolution (1 / duration of the sequence) and the frequency of 235 

stimulation (target frequency), pre-processed data were re-segmented so as to contain an integer of voice 236 

presentation cycles to avoid overspill of the target-rate response in the frequency domain. Therefore, 237 

epochs were re-segmented excluding fade-in and –out and had a final length of 60 s. For each condition 238 

and participant separately, epochs were averaged in the time domain to attenuate EEG activity not in 239 

phase with the auditory stimulation. A fast Fourier transformation was applied, resulting in amplitude 240 

spectra for each channel, condition and subject. Amplitude spectra ranged from 0 to 128 Hz and had a very 241 

high resolution of 0.0167 Hz (i.e., 1/60s), thus allowing to isolate responses at the frequencies of interest 242 
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and their harmonics. Then, we determined the number of significant harmonics at the group level for 243 

target and base frequencies: for each condition separately, we computed the grand average across 244 

subjects, pooled all channels together and calculated z-scores on these averaged spectra including as 245 

baseline 20 surrounding frequency bins (10 bins on each side excluding the immediately adjacent bins, the 246 

local minimum and the local maximum; e.g. Retter & Rossion, 2016). Harmonics of the target and base 247 

frequencies were considered as significant if their relative z-scores were higher than 2.32 (i.e. p<0.01, 1-248 

tailed, signal > noise). Consecutive significant harmonics were considered, excluding frequencies 249 

corresponding to the base-rate responses for the count of target-rate significant harmonics. Responses are 250 

represented as topographical head maps summing baseline subtracted amplitude spectra at significant 251 

harmonics for target and base frequencies separately, where baseline was calculated as for the calculation 252 

of z-scores. Baseline subtraction prior to quantification of the response enables to take into account the 253 

fact that different frequency bands are differentially affected by noise in EEG recordings (Luck, 2014), with 254 

typically higher noise at low frequencies (below 1 Hz) and in the alpha frequency band (8-13 Hz). We also 255 

compared the sum of the baseline subtracted amplitude of the significant harmonics as elicited by the 256 

standard and the scrambled sequences (standard > scrambled, Bonferroni correction for the 128 257 

electrodes). To compute this comparison, we considered the highest number of significant harmonics in 258 

any of the two conditions (here, standard) knowing that including baseline-subtracted activity at non-259 

significant harmonics to compute the overall response is not detrimental (i.e., adding zeroes). The 260 

electrodes that were significant for the standard > scrambled comparison were considered to define the 261 

voice-selective region-of-interest (ROIvoice).  262 

To assess the robustness of the method to identify voice-selective responses with an even shorter 263 

acquisition time, we conducted the same analysis to individuate significant harmonics considering only the 264 

responses elicited by the first stimulation sequence for each condition (i.e., one minute of recording). 265 

Lastly, we performed source localization to identify the generators of the voice-selective response. 266 

Source localization was implemented here with Dynamic Imaging of Coherent Sources (DICS, Gross et al., 267 

2001) following the method as described in Popov et al., 2018. Using the cross-spectral density (CSD) 268 

calculated at the sensor level, DICS estimates the interaction between sources at a particular frequency: in 269 
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this case, at the voice presentation frequency (1.333 Hz). This beamformer was chosen since it yields lower 270 

localization error despite low SNR when compared to other current density measures (Halder et al., 2019). 271 

To attenuate brain activity not in phase with the auditory stimulation, all epochs were averaged in the time 272 

domain, then across all subjects for standard and scrambled sequences separately; consequently, a Fourier 273 

transform was applied to compute the CSD. The forward model was computed with the segmentation of 274 

the MRI152 template, based on which a headmodel was generated using the boundary element model 275 

(BEM), characterizing the current conduction and propagation properties in surfaces of scalp, skull and 276 

brain. Sources were placed in the brain part of the volume conduction headmodel with a resolution of 5 277 

mm. Further, we performed a manual co-registration of the headmodel and Biosemi electrode coordinates 278 

using rotation, translation and scaling of the electrodes on the scalp to match our best visual estimate. Due 279 

to the imprecise co-registration of the forward model, as we did not have individual participants’ MRI and 280 

precise electrode location on the scalp, we did not focus on the exact anatomical areas of the brain 281 

generators, but limited our attention to compare the voxel-by-voxel activity (i.e. coherence) between the 282 

two conditions. A common spatial filter was computed by appending the data of the two conditions to 283 

localize each condition. A regularization parameter of 5% was used. Then, we calculated the difference of 284 

coherence values between the standard and scrambled conditions taking the whole brain into 285 

consideration to estimate an overall activity at the target frequency. We hypothesized to obtain higher 286 

coherence values for the standard condition. 287 

Although source analysis is introduced to suggest a link with previous neuroimaging studies, results 288 

should be interpreted cautiously, not only because of the indeterminate nature of source localization from 289 

scalp voltage potentials but also because we did not collect MRI scans of individual participants, nor the 290 

electrode positions on their scalp during the EEG sessions, important elements that would enhance the 291 

precision and accuracy of source localization (Akalin Acar and Makeig, 2013). We therefore consider the 292 

results of the source localization for visualization purpose only and the main statistical inferences were 293 

done on the scalp data. 294 

2.2 Experiment 2 – Voice versus musical instruments controlled for low level acoustic properties 295 

 Materials and methods were the same as for experiment 1 unless specified below. 296 
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 2.2.1 Stimuli 297 

Sounds were extracted from a database provided by Agus and collaborators (Agus et al., 2017; 298 

Goto et al., 2003). Stimuli were 128 ms, therefore the base and target frequencies of what we will refer to 299 

as harmonic sequences were approximately 7.813 Hz and 2.604 Hz, respectively. Vocal stimuli (16 300 

exemplars) consisted in vowels /a/, /e/, /i/ and /o/ sung in the note A3 by two male and two female 301 

singers. Non-vocal sounds consisted in sixteen different musical instruments playing the note A3 (oboe, 302 

clarinet, bassoon, saxophone, trumpet, trombone, horn, guitar, mandolin, ukulele, harpsichord, piano, 303 

marimba, violin, viola, and cello, for a total of 16 stimuli). Importantly, vocal and non-vocal sounds 304 

implemented for this sequence type were matched for pitch (M = 223.5 Hz, SD = 7.1Hz for voices, M = 305 

220.6 Hz, SD = 1.85 Hz for instruments, Welch Two Sample t-test t(17.03) = 1.56, p = 0.14), spectral center 306 

of gravity (Mann-Whitney Test, W = 107, p = 0.45) and harmonicity to noise ratio (M = 20.9 dB, SD = 2.5 dB 307 

for voices, M = 18.9 dB, SD = 5.0 dB for instruments, Welch Two Sample t-test t(21.8) = 1.45, p = 0.16, 308 

Figure 1E). Stimuli were equalized in overall energy (RMS) and their RMS value was set as to match the 309 

energy of the sounds of experiment 1. Sounds were then faded-in and –out with 10 ms ramps in order to 310 

facilitate individual sounds segregation and avoid clicking. 311 

2.2.2 Procedure 312 

Harmonic sequences were generated following the same procedure as reported for experiment 1, 313 

presenting sounds one after another with each third sound being a voice. Sequences were 65,5 s long 314 

including 2 s of fade-in and -out. As in experiment 1, individual sequences were created before testing for 315 

each repetition and for each individual participant and included six attentional targets consisting in sounds 316 

played at a lower volume. Participants were required to listen to four different harmonic sequences and 317 

press a button whenever they perceived a sound played in a lower volume sitting blindfolded at 90 cm 318 

from the speakers.  319 

2.2.3 Analysis 320 

Data were analyzed as in experiment 1 with the epochs being re-segmented from 2.048 s after the 321 

onset of the sequences (to exclude fade-in and to start segmenting from the onset of the first sound at 322 

100% volume) and had a final length of 59.9 s to contain an integer of voice presentation cycles and avoid 323 
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overspill of the target-rate response in the frequency domain. The number of significant harmonics for the 324 

responses at the target and base frequencies were calculated as in the previous experiment considering all 325 

four stimulation sequences or the first sequence alone. We then performed a region-of-interest analysis by 326 

averaging the sum of the baseline subtracted amplitude of the significant harmonics of the target of the 327 

electrodes of the ROIvoice as defined in experiment 1 and contrasted the resulting activity against 0. 328 

2.3 Experiment 3 - Behavioral detection of voices 329 

To validate that the sounds presented in the two EEG experiments could effectively be categorized 330 

as vocal/non-vocal sounds and to assess the effectiveness of the sound scrambling procedure in altering 331 

intelligibility, we conducted a behavioral experiment in which participants had to classify all sounds, 332 

presented either in short sequences or in isolation, as vocal or non-vocal sounds. 333 

2.3.1 Participants 334 

Sixteen participants (age range 18-26 years, 9 female), four of which had previously participated in 335 

the EEG experiments, took part in the behavioral experiment. All participants reported normal or corrected 336 

to normal vision, normal hearing and no history of psychiatric or neurological disorders. The experiment 337 

was approved by the local ethical committee of the University of Louvain (Project 2016-25); all participants 338 

provided written informed consent and received financial compensation for their participation. 339 

2.3.2 Stimuli 340 

 Auditory stimuli were the same as for experiments 1 and 2, all equalized so to have the same 341 

overall energy (RMS) and faded-in and -out with 10 ms ramps. 342 

 2.3.3 Procedure 343 

Participants listened to sounds corresponding to the three sequence types of experiments 1 and 2 344 

(standard, scrambled and harmonic) that were presented either embedded in short sequences of five 345 

sounds (task sequence) or in isolation (task isolation). For the sequence task, short sequences were created 346 

so that they could contain either one vocal sound or none (50% / 50% of occurrences). In particular, when a 347 

vocal sound was presented in a short sequence, it was inserted as the third sound to mimic the structure of 348 

sequences implemented for the electroencephalographic experiments. For each condition, 80 sequences 349 

were created (40 with one voice, 40 without voices), for a total of 240 trials (1 short sequence of the 350 
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behavioral experiment = 1 trial). In the isolation task, for the sequence types standard and scrambled we 351 

presented 33 vocal and 67 non-vocal sounds extracted randomly for each participant to reproduce the 1 to 352 

2 ratio of vocal and non-vocal stimuli presented in sequences in the EEG experiment. For the harmonic 353 

sequence, we presented all 16 vocal and 16 non-vocal stimuli. Sounds from each of the three conditions 354 

were presented once in a randomized order, for a total of 132 trials (1 sound = 1 trial). The sequence and 355 

isolation tasks were presented one after another. Each trial consisted in the presentation of one short 356 

sequence (sequence)/one sound (isolation) after which participants had to indicate whether they heard a 357 

voice or not with a button press and a response was required in order to initiate the following trial. 358 

Participants performed the task blindfolded. The experiment was implemented on Matlab_R2016b 359 

(MathWorks, USA) using the Psychophysics Toolbox extensions (Brainard, 1997; Kleiner et al., 2007; Pelli, 360 

1997). 361 

3. Results 362 

3.1 Experiment 1 – Voice versus object sounds 363 

 We expected clear responses at the base frequency (BF, 4 Hz) and harmonics (multiples of BF: 2BF, 364 

3BF, etc.) for both the standard and the scrambled sequences, a response at the base frequency reflecting 365 

shared processes between all sounds. Then, we predicted to observe – or not, depending on the sequence 366 

type – responses at the target frequency (TF, 1.333Hz) and the harmonics. Critically, a response at the 367 

target frequency would arise only if the participant’s brain successfully discriminates human voices from 368 

other sounds and generalizes across voices. We predicted that the standard sequences would elicit a voice-369 

selective response reflecting selective responses to vocal versus non-vocal sounds. We also hypothesized 370 

that if voice-selective responses evoked by the standard condition were the mere by-product of frequency 371 

content, the scrambled condition would have elicited responses quantitatively (in terms of magnitude of 372 

the response) and qualitatively (in terms of topographical distribution of the response) similar to the 373 

standard condition. 374 

 375 

3.1.1 Base frequency 376 
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 We observed significant responses for the first two harmonics of the base stimulation frequency, 377 

i.e. at 4 and 8 Hz, for both the standard and scrambled sequences. The scalp topographies of the two 378 

conditions obtained summing baseline corrected amplitudes at the two significant harmonics did not differ, 379 

suggesting that individual sounds were similarly processed between the standard and scrambled 380 

conditions, with responses peaking over central and occipital electrodes (Figure 2). 381 

3.1.2 Target frequency    382 

 The standard sequence elicited robust voice-selective responses that were significant at the group 383 

level for the first four harmonics of the target frequency (at 1.333 Hz, 2.666 Hz, 5.333 Hz and 6.666 Hz). For 384 

the scrambled sequence, we observed a weak but significant response only at the first harmonic of the 385 

target frequency (at 1.333 Hz). We quantified voice-selective responses as the sum of the baseline 386 

subtracted amplitudes of the highest number of significant harmonics in any of the two conditions (here: 387 

standard, four harmonics) knowing that including baseline-subtracted activity at non-significant harmonics 388 

to compute the overall response is not detrimental (i.e., adding zeroes; Retter et al., 2018). For the 389 

standard condition, voice-selective responses peaked bilaterally at superior temporal electrodes (Figure 2): 390 

TP8h, CP6, T8h, T8 on the right hemisphere and T7h, T7, TP7 on the left hemisphere (contrasting the 391 

response against zero, one-sided t-test, reported p-values are Bonferroni corrected, Cohen’s d values are 392 

reported referred to as “d”, TP8h: t(15) = 6.68, p = 0.0005, d = 1.67; CP6: t(15) = 5.51, p = 0.0038, d = 1.38; 393 

T8h: t(15) = 6.89, p = 0.0003, d = 1.72; T8: t(15) = 7.16, p = 0.0002, d = 1.79; T7h: t(15) = 5.62, p = 0.0031, d 394 

= 1.40; T7: t(15) = 5.44, p = 0.0043, d = 1.36; TP7: t(15) = 5.56, p = 0.0035, d = 1.39), the topography of the 395 

response being consistent across participants (Figure 3). No electrode reached significance when we 396 

computed the same contrast for the scrambled condition. Overall, in regions where the response was 397 

peaking for the standard condition, the amplitude of the response to voice-scrambled stimuli was of 50.6% 398 

of the response to voices for the left ROI (T7h, T7, TP7) and only 18.8% for the right ROI (TP8h, CP6, T8h, 399 

T8; Figure 2F). Moreover, the magnitude of the responses to the standard and scrambled conditions over 400 

these two region-of-interests did not correlate across participants (Spearman’s rho correlation, left ROI: rs = 401 

0.11, p = 0.68, right ROI: rs = 0.14, p = 0.62; Figure 2G). This suggests that, although scrambled voices could 402 

elicit a response, frequency content alone was not enough to elicit a voice-selective response as recorded 403 
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with the standard sequence. We further investigated that by comparing the responses elicited at the target 404 

frequency by the standard and the scrambled sequences; although one of the advantages of the FPAS 405 

paradigm is that it does not require a direct comparison between conditions, we decided to include this 406 

extra step as a proof of principle since we introduce oddball fast periodic stimulation with high-level, 407 

naturalistic sounds for the first time here. First, for each condition, participant and electrode separately we 408 

summed the responses of the highest number (i.e., four) of significant harmonics in any of the two 409 

conditions. Then, comparing the responses for each participant and electrode (standard > scrambled, 410 

paired-sample t-test, Bonferroni corrected), we isolated four significant superior temporal electrodes over 411 

the right hemisphere: TP8h, CP6, C6 and T8 (TP8h: t(15) = 6.21, p = 0.0011, d = 1.55; CP6 : t(15) = 5.02, p = 412 

0.0097, d = 1.26; C6: t(15) = 4.71, p = 0.0179, d = 1.18; T8: t(15) = 4.60, p = 0.0223, d = 1.15, Bonferroni 413 

corrected). Non-parametric testing (Winkler et al., 2014) of the standard > scrambled comparison led to 414 

very similar results and the choice of a one-sided comparison was made with the a priori assumption that 415 

the scrambled condition would have elicited a target response as high - if voice responses could have been 416 

explained by frequency content alone - or smaller than the one elicited by the standard sequence. Finally, a 417 

region-of-interest was defined considering the four electrodes identified as above (ROIvoice; Figure 2).  418 

To assess whether FPAS was a suitable tool to investigate voice-selectivity at the individual level, 419 

we calculated whether these responses were significant in every subject (Liu-Shuang et al., 2016). For each 420 

participant, we considered the amplitude spectrum and we pooled together all channels. We chunked 421 

epochs that were centered around the harmonics of the target frequency that were significant at the group 422 

level (1.333 Hz, 2.666 Hz, 5.333 Hz and 6.666 Hz) and that contained 11 frequency bins on each side. We 423 

then summed these epochs together and computed the z-scores at the target frequency considering as 424 

baseline the 20 surrounding frequency bins (10 on each side, excluding the immediately adjacent bin). 425 

Considering as significant responses whose relative z-scores was higher than 1.64 (i.e. p<0.05, 1-tailed, 426 

signal > noise), we were able to find significant voice-selective responses in 13 out of 16 participants (with 427 

only 4 minutes of recordings). 428 

To assess the robustness of the method with an even shorter acquisition time, we then performed 429 

the same analytical steps done to calculate the number of significant harmonics at the group level 430 
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considering the first sequence of recording only. For the standard sequence, we were able to identify voice-431 

selective responses that were significant at the group level even with one minute of recording only (1 432 

significant harmonic: 1.333 Hz). The signal-to-noise ratio (SNR) of the response at right superior temporal 433 

electrodes (ROIvoice) as a function of number of stimulation sequences (i.e., minutes of recordings, as each 434 

sequence is one minute long) is presented for visualization purposes in Figure 2C. 435 

A stronger voice-selective response in the standard condition was observed when compared to the 436 

scrambled condition at the source level as well. After implementing source localization, the final voxel 437 

coherence values were compared for the two conditions (standard > scrambled) and interpolated to the 438 

MRI152 template. Then, the voxels with intensity above the 95th percentile were selected, as illustrated in 439 

figure 2B. The maximum value obtained of 0.32 (min-max range: [0 1]) indicates voxel preference for voice 440 

presentation frequency (i.e. 1.333 Hz) for the standard over the scrambled sequence. Despite the imprecise 441 

source localization due to the limitations outlined in the method section (lack of individual coregistration 442 

between electrodes position and brain anatomy), the position of the source reconstructed effect of interest 443 

(Figure 2B) lies in the vicinity of the known location of TVAs (Belin et al., 2002, 2000) and are in line with 444 

results showing that right anterior STS regions respond more strongly to non-speech vocal sounds than 445 

their scrambled versions (Belin et al., 2002). 446 

3.2 Experiment 2 – Voice versus musical instruments controlled for low level acoustic properties 447 

 We expected to observe a response at the base presentation frequency (7.813 Hz) and its 448 

harmonics, this response reflecting processes that are shared among vocal and non-vocal sounds. More 449 

crucially, we predicted that, if voice-selectivity is not solely driven by harmonicity and/or pitch of the 450 

sounds, we would observe a target-rate response to the harmonic sequences as in these sequences vocal 451 

and non-vocal sounds did not differ for these low-level acoustic features. 452 

 453 

3.2.1 Base frequency 454 

 There was a significant base-rate response for the first two harmonics: at 7.813 Hz and 15.625 Hz, 455 

with responses peaking over central and occipital electrodes (Figure 4). The topography of the response 456 

was qualitatively similar to the base-rate responses obtained in experiment 1. 457 
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3.2.2 Target frequency 458 

We observed a significant voice-selective response for the first two harmonics (2.604 Hz and 5.208 459 

Hz). Voice-selective responses peaked over central and superior temporal electrodes bilaterally, the scalp 460 

distribution of the response being highly similar to the voice-selective response found in the standard 461 

sequence (Figure 4) and being reliable across participants. We then performed a region-of-interest analysis 462 

considering the right superior temporal electrodes (ROIvoice) as defined in experiment 1. Baseline 463 

subtracted amplitudes at the two significant harmonics were summed for each electrode individually and 464 

the resulting responses at the electrodes of the ROIvoice were then averaged together for every 465 

participant. One data point was excluded as it deviated more than three standard deviations from the 466 

mean of the group and responses were significant against zero (M = 0.152 PV, SD = 0.087 PV, t(14) = 6.78, p 467 

= 4.436 x 10-6, d = 1.75, 1-tailed t-test). 468 

Voice-selective responses were already present after one minute of recording, showing the 469 

resilience of FPAS even with very short acquisition time (one harmonic significant, the second: 5.208 Hz, 470 

with two minutes of recording the first two harmonics reached significance at the group level; Figure 4).  471 

As for the standard condition, we then assessed significance of voice-selective responses at the 472 

individual level with the same procedure. 15 out of 16 participants showed a significant response (z-score 473 

higher than 1.64, i.e. p<0.05, 1-tailed, signal > noise). 474 

 475 

3.3 Experiment 3 - Behavioral detection of voices 476 

Responses to the sequence and isolation tasks were analyzed according to signal detection theory. 477 

Specifically, sensitivity indices related to the participants’ ability to detect a voice when present was 478 

assessed using d-prime (Figure 5). D-prime (d’) constitutes an unbiased quantification of performance in 479 

detection tasks as it takes into account both hits and false alarms (Macmillan and Creelman, 2004; Tanner 480 

and Swets, 1954). Data points were considered as outliers when deviating from the mean of the group of 481 

more (or less) than three times the standard deviation of the group in at least one condition/task, leading 482 

to the exclusion of one participant. We first checked whether performance was above chance (d’ = 0) for 483 

each condition and for the sequence and the isolation task separately. Participants performed above 484 
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chance for all conditions in the sequence (t-test, 1-tail, standard: d’ values mean M = 4.11, SD = 0.45, t(14) 485 

= 35.30, p = 2.2 x 10-15, Cohen’s d = 9.11; scrambled: M = 0.29, SD = 0.30, t(14) = 3.75,  p = 0.001, d = 0.97; 486 

harmonic: M = 1.91, SD = 0.77, t(14) = 9.58, p = 7.8 x 10-8, d = 2.47) and in the isolation task (t-test, 1-tail, 487 

standard: M = 4.25, SD = 0.46, t(14) = 35.71, p = 1.8 x 10-15, d = 9.21; scrambled: M = 0.16, SD = 0.21, t(14) = 488 

2.97, p = 0.005, d = 0.77; harmonic: M = 3.30, SD = 1.24, t(14) = 10.29, p = 3.3 x 10-8, d = 2.66). Statistical 489 

comparisons of conditions were then performed separately for the two tasks using repeated measures 490 

ANOVAs. Whenever Mauchly’s test indicated that the assumption of sphericity had been violated, we 491 

applied a Greenhouse-Geisser correction to the degrees of freedom.  For the sequence task, we found a 492 

significant effect of condition (F(2,28) = 207.39, p = 1.6 x 10-17, K2 = 0.898) and post-hoc pairwise 493 

comparisons showed that all conditions differed one from another (standard vs. scrambled, p < 2 x 10-16; 494 

standard vs. harmonic, p = 7.1 x 10-9; scrambled vs. harmonic, p = 1.5 x 10-6; Bonferroni corrected). The 495 

same pattern of performance was found when sounds were presented in isolation (F(1.20, 16.86) = 134.23, 496 

p = 6.8 x 10-10, K2 =0.845 ; pairwise comparisons: standard vs. scrambled, p < 2 x 10-16; standard vs. 497 

harmonic, p = 0.038; scrambled vs. harmonic, p = 2.7 x 10-7; Bonferroni corrected). Although performance 498 

was above chance for the scrambled sounds, d-prime scores were significantly lower than the one achieved 499 

in the standard condition (Figure 5), suggesting that our frequency scrambling effectively disrupted the 500 

intelligibility of the sounds. 501 

4. Discussion 502 

 Similarly to the issue of category-selectivity in human visual cortex (Bracci et al., 2017; Peelen and 503 

Downing, 2017; Rice et al., 2014), studies have attempted to determine whether category-selectivity in 504 

auditory cortices is mostly driven by a biased tuning toward low-level acoustic features or if categorization 505 

responses go beyond the acoustic properties of sound and therefore represent a more abstract 506 

representation of voices (Giordano et al., 2013; Leaver and Rauschecker, 2010). In fact, as sounds tend to 507 

be acoustically similar within an auditory category and dissimilar between categories, differences in cortical 508 

responses could be a mere reflection of different acoustic properties across categories of sounds (Ogg et 509 

al., 2019; Staeren et al., 2009). One approach to address this question is to test for low-level featural 510 

coding. However, although studies using artificial stimuli allow for a careful control of low-level acoustic 511 
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properties (Lewis et al., 2009; Patterson et al., 2002; Warren et al., 2005), they usually lack ecological 512 

validity and underestimate the issue of stimulus-driven response correlation (Norman-Haignere and 513 

McDermott, 2018). Moreover, artificial stimuli may fail in eliciting brain activation in a (behaviorally) 514 

relevant way, as evidenced by a study revealing different tonotopic maps obtained with natural sounds and 515 

pure tones (Moerel et al., 2012).  516 

In this study, we developed a Fast Periodic Auditory Stimulation (FPAS) paradigm as a powerful mean to 517 

investigate voice-selectivity in the brain with the aim of disentangling between a categorization response to 518 

voices and the contribution of low-level acoustic features that are typical of voices (e.g. high harmonicity, 519 

characteristic frequency ranges, specific change of energy over time) with EEG. The frequency constraint of 520 

this approach allowed us to individuate robust voice-selective responses objectively – at known stimulation 521 

frequencies – and automatically: not only participants did not have to overtly respond to voices, thus 522 

avoiding the contamination of the response from attentional and decisional processes (Levy et al., 2003; 523 

Von Kriegstein et al., 2003), but also no subtraction between responses elicited by different auditory 524 

categories was required. That is, while traditional M/EEG approaches investigate whether there are 525 

differences in isolated responses elicited by different classes of stimuli (Charest et al., 2009; De Lucia et al., 526 

2010; Levy et al., 2003; Murray et al., 2006), in our paradigm this differentiation is implicit. Moreover, the 527 

relatively low-speed presentation of stimuli required by many traditional experimental paradigms preclude 528 

from the possibility of presenting a high number of stimuli that could be representative enough of an 529 

auditory category and therefore responses observed to such a subset of voice samples might not reflect a 530 

generalized response to voices (Giordano et al. 2013). In addition, low-speed presentation of stimuli might 531 

fail in fully characterising voice processes as they occur in daily-life, since we are experts in extracting voice 532 

features almost effortlessly in highly dynamic acoustically changing environments. 533 

For a voice-specific response to be captured with the FPAS paradigm, two processes need to occur: 534 

the brain has to concurrently discriminate voices from non-vocal sounds and to generalize this selective 535 

response across diverse vocal samples for a response at the target (i.e. voice presentation) rate to occur. 536 

FPAS therefore not only allows to characterize a general voice-selective response, as it is elicited by 537 

heterogeneous vocal samples and not from a specific subset of those, but also not to cancel out processes 538 
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elicited by voices that are shared by other sound categories. This can be accomplished in a very short 539 

acquisition time (i.e. four minutes or even less) and with a high SNR (Figure 2C, e.g., up to 7, or 600% of 540 

amplitude increase with 4 stimulation sequences).  541 

To isolate voice-selective responses that could not be merely explained by low-level acoustic 542 

features, we implemented two EEG experiments using the FPAS principle. In the first experiment, 543 

participants were presented with two different types of FPAS sequences. In the standard sequence, vocal 544 

and non-vocal samples were selected to be as heterogeneous as possible to represent the high variability of 545 

sounds of a given category (e.g., voices from speakers from different ages, sex, emotional state with speech 546 

and non-speech vocalizations) as encountered in natural environment, as well as to minimize the potential 547 

contributions of low-level acoustic features in the voice-selective response (controlling by variability). 548 

Specifically, low level acoustic properties would have to vary periodically to participate in the target-specific 549 

responses, and the high variability of the voice samples adopted should prevent that. These sounds were 550 

then scrambled using small frequency bins (after FFT) in order to generate a sequence in which scrambled 551 

sounds had similar frequency content as the original stimuli (Figure 1C) but were not recognizable anymore 552 

(Figure 5). We measured robust voice-selective responses at superior temporal electrodes that were 553 

significant in the vast majority of the participants with only 4 minutes of recording (Figure 2). Moreover, 554 

these responses remained significant at the group level when restricting the analysis to the first minute of 555 

recording only, highlighting the robustness of the method even with an extremely short acquisition time. 556 

Voice-selective responses could not have been explained by frequency content alone: although one of the 557 

advantages of FPAS is that it does not require an explicit comparison across conditions, here, as an extra 558 

proof of principle, we compared the responses elicited by the standard and scrambled sequences, 559 

highlighting a response expressing over right superior temporal electrodes. This preference also emerged at 560 

the source space: although source localization as implemented in our study presents limitations that could 561 

hinder the accuracy of our results (see methods section), we localized a standard > scrambled preference 562 

over the right superior temporal gyrus and sulci. The observed regions lie in the proximity of the TVAs and 563 

are  in line with results showing that the right anterior STS regions respond more strongly to non-speech 564 

vocal sounds than their scrambled versions (Belin et al., 2002). 565 
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It has to be noted that the scrambled condition elicited a weak but yet significant response at the 566 

(scrambled) voice presentation rates: we think there might be two - not mutually exclusive - explanations 567 

for this weak response. First, this response might be due to the low-level acoustic features shared by voices 568 

and scrambled voices (i.e. frequency content): preferential response biases towards acoustic features 569 

peculiar of voices have been observed in voice-selective regions (Moerel et al., 2012) and, despite the fact 570 

that voice-selective responses elicited by the standard condition could not be well explained by low-level 571 

acoustic features alone, these features may nevertheless weakly contribute to the response. Second, 572 

although the scrambling procedure disrupted the intelligibility of the sounds, with original sounds being 573 

more accurately recognized as voices or not than scrambled sounds, participants’ performance in 574 

categorizing scrambled sounds was above chance level, suggesting that some residual sound recognizability 575 

might have still been present.  576 

To further investigate the nature of voice-selective responses, we designed a second FPAS 577 

experiment using sequences built from sung vowels and musical instruments that were matched in terms 578 

of pitch, spectral center of gravity and harmonicity to noise ratio. The observation of robust voice-selective 579 

responses despite controlling for the above-mentioned acoustic features speaks in favor of a categorization 580 

response to voices that is at least partially independent from some of the most intrinsic acoustic features of 581 

voices. The similar scalp topographies elicited by the standard and harmonic sequences suggest a similarity 582 

between the selective responses to voices elicited in the two conditions. However, the voice-selective 583 

response in the standard sequences was larger in amplitude as compared to the response of the harmonic 584 

sequence. Different factors might account for this difference. First, the higher amplitude of response 585 

observed in the standard sequence could be due to voices being more easily discriminated from non-vocal 586 

sounds, as pointed out by the behavioral data. In fact, even if an overt response to voices is not necessary 587 

to elicit a target rate specific response, the easiness at which a voice is perceived could have impacted the 588 

amplitude of brain responses. Second, while vocal stimuli of the harmonic sequence were accurately 589 

chosen to be matched in acoustic properties with the sounds of musical instruments, it could be argued 590 

that those vocal stimuli represent a subset of voices, and thus that the strongest response in the standard 591 

condition reflects the response to a more heterogeneous and representative sample of voices of that 592 
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condition. The choice of the frequencies of stimulation could also have impacted on the magnitude of the 593 

responses (Ding et al., 2006; Regan, 1966; Retter et al., 2020): while all parameters proved effective in 594 

eliciting target-rate responses, further studies would be needed to indicate which parameters are optimal 595 

to capture voice-selective responses, as addressed in the case of the implementation of the frequency 596 

tagging approach in high-level vision (e.g., Retter et al., 2020; Alonso-Prieto et al., 2013). Finally, systematic 597 

differences in low-level acoustic features between vocal and non-vocal sound potentially present in the 598 

standard sequence could have boosted the categorization response to voices. In fact, feature dependence 599 

is not in conflict with a categorical coding hypothesis (Bracci et al., 2017), and preferential response biases 600 

observed in voice regions to specific acoustic features such as low frequencies (Moerel et al., 2012), 601 

harmonic structure (Lewis et al., 2009) and spectrotemporal modulations (Santoro et al., 2017), could serve 602 

as a scaffold or facilitate a higher level categorical responses to voices. 603 

 In summary, we objectively defined human voice-selective responses independent from low-level 604 

acoustic cues that are characteristic of voices with high SNR and in a very short acquisition time using an 605 

original Fast Periodic Auditory Stimulation (FPAS) approach. Although it is possible that other acoustic 606 

features that were not explicitly controlled for might be at the origin of the recorded responses, the nature 607 

of the FPAS design makes it unlikely, as said features should be systematically present in all voices and 608 

absent in non-vocal sounds.  In other words, activity in voice-selective regions could not be only, or even 609 

substantially, accounted for by any basic acoustic parameter tested. 610 

While the goal of the current study was to investigate the existence of a voice-selective response 611 

partially independent from some acoustic features, the FPAS paradigm we developed could be a valuable 612 

tool for the study of auditory perceptual categorization in the human brain, extending to other categories. 613 

Moreover, the high SNR of this technique achievable in a very short acquisition time (i.e., significant 614 

responses were observed with one minute of recording) and the fact that no overt response to specific 615 

stimuli is required, makes this approach highly promising for studying voice perception in children and 616 

clinical populations. Our findings therefore advance our understanding of voice-selectivity in the brain and 617 

our method provides an essential foundation for understanding its development in typical and atypical 618 

populations. 619 
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 726 

Figure 1. Experimental design for experiments 1 (A, B ,C) and 2 (D, E). A) 3 s excerpts of the sequences for 727 

the standard (top) and scrambled (bottom) sequences (left) with their relative spectrograms (right). B) 728 

Schematic representation of the paradigm. C) Standard and scrambled sequences: Bode magnitude plot 729 

expressing the magnitude in decibels as a function of frequency for the averaged sounds of vocal and non-730 

vocal stimuli separately, for standard and scrambled sequences. D) 3 s excerpts of the harmonic sequence 731 

(left) with its spectrogram (right). E) Acoustic features as a function of sound category: harmonicity-to-732 

noise ratio, pitch and spectral center of gravity. 733 
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 734 

Figure 2. Experiment 1 – Voice versus object sounds. A) Responses at the base (top) and at the target 735 

frequency (bottom) for the standard (left) and scrambled (right) conditions as topographic head plots. 736 

Topographic head plots were obtained by summing the baseline subtracted amplitude at the significant 737 

harmonics. B) Source localization analysis revealed stronger coherence values at the target frequency for 738 

the standard condition (standard > scrambled) over right superior and middle temporal areas (voxels with 739 

intensity above the 95th percentile are highlighted in red). C) Signal-to-noise ratio (SNR) of voice-selective 740 

responses obtained by averaging SNR values of ROIvoice electrodes as a function of number of stimulation 741 

sequences/minutes of recording for the standard condition. D) SNR averaged spectra of ROIvoice 742 

electrodes. E) Sum of the baseline corrected amplitude (considering 10 bins on each side, excluding the 743 

immediately adjacent ones) of voice selective responses at the four significant harmonics for the standard 744 

(blue) and scrambled condition (orange).  F) Responses at the target frequency for the standard (blue) and 745 

scrambled (orange) conditions as the sum of baseline subtracted amplitude at four harmonics in the left 746 
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and right ROIs. G) There is no correlation between responses at the left and right ROIs across the standard 747 

and scrambled conditions. 748 

 749 

Figure 3. Experiment 1 - individual voice-selective responses. Responses at the voice presentation 750 

frequency for each individual. Topographic head plots represent the sum of the baseline subtracted 751 

amplitude of significant harmonics as identified at the group level. The scale of each head plot ranges from 752 

0 ђV to the maximum (reported on top) for each subject. 753 
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 754 

Figure 4. Experiment 2 – Voice versus musical instruments. A) Responses at the base and at the target 755 

frequency as topographic head plots. Topographic head plots were obtained by summing the baseline 756 

subtracted amplitude at the significant harmonics. B) SNR averaged spectra of ROIvoice electrodes. 757 

 758 
Figure 5. Experiment 3 - Behavioral detection of voices. Sensitivity indices for the sequence (left) and 759 

isolation (right) tasks, for the three conditions. The bar plots represent the group average of d’, each dot 760 

represents an individual participant’s d’ score. 761 


