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Abstract

At what level of spatial resolution can the human brain recognize a familiar face in a crowd of strangers? Does it depend on
whether one approaches or rather moves back from the crowd? To answer these questions, 16 observers viewed different
unsegmented images of unfamiliar faces alternating at 6 Hz, with spatial frequency (SF) content progressively increasing
(i.e., coarse-to-fine) or decreasing (fine-to-coarse) in different sequences. Variable natural images of celebrity faces every
sixth stimulus generated an objective neural index of single-glanced automatic familiar face recognition (FFR) at 1 Hz in
participants’ electroencephalogram (EEG). For blurry images increasing in spatial resolution, the neural FFR response over
occipitotemporal regions emerged abruptly with additional cues at about 6.3-8.7 cycles/head width, immediately reaching
amplitude saturation. When the same images progressively decreased in resolution, the FFR response disappeared already
below 12 cycles/head width, thus providing no support for a predictive coding hypothesis. Overall, these observations
indicate that rapid automatic recognition of heterogenous natural views of familiar faces is achieved from coarser visual

inputs than generally thought, and support a coarse-to-fine FFR dynamics in the human brain.
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Introduction

Recognizing a face as being familiar, that is, previously encoded
as a distinctive face identity in memory, is fundamental for the
quality of social interactions in the human species. Human face
recognition has been scientifically studied for decades with 2D
images (Ellis 1975; Bruce and Young 1986; Calder et al. 2011
for reviews). Here we use such images to ask 2 related ques-
tions regarding familiar face recognition (FFR). First: “how much
spatial resolution does the human brain require to recognize a
natural image of a face as being familiar?” We aim at answering
this question for neurotypical human adults, who are gener-
ally considered as having the highest level of expertise at face
identity recognition, at least compared with infants and chil-
dren, various neurological and neuropsychiatric populations,
and other animal species (Rossion 2018).

Given the importance of this issue for clinical (i.e., visual
impairment) and applied research (i.e., the development and
optimization of artificial face recognition systems), many stud-
ies have investigated the spatial resolution—either in terms of
the number of pixels by image or more often in terms of the scale
of luminance variations in an image (i.e., spatial frequencies, SF;
Campbell, Cooper, and Enroth-Cugell 1969; De Valois and De Val-
ois 1980)—that is necessary to recognize face identities. Accord-
ing to early reports/illustrations, face identities could be well
recognized even at extremely low spatial resolution (Harmon
1973; Harmon and Julesz 1973; Ginsburg 1980; Rubin and Siegel
1984; Sinha 2002; see also Yip and Sinha 2002). Subsequent,
more systematic, experimental studies found that face iden-
tity recognition drops significantly below about 6-8 SF cycles/-
face width (Bindemann et al. 2013; Fiorentini et al. 1983; Peli
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et al. 1994) and does not increase significantly beyond this range
(Bachmann 1991; Costen et al. 1994; Peli et al. 1994). Despite these
observations, the prevalent view in the scientific community
is that identity cues provided by a medium range of SF (e.g.,
between 8 and 12 or 8 and 16 cycles/face width) may be optimal
for face identity recognition (i.e., “The golden mean”, e.g., Collin
et al. 2006; Collin et al. 2014; Costen, Parker, & Craw 1996; Fioren-
tini et al. 1983; Gao & Maurer 2011; Gold, Bennett, & Sekuler
1999; Keil 2008; Nasanen 1999; Ojanpaa & Nasanen 2003; Parker
& Costen 1999; Schyns, Bonnar, Gosselin 2002; Tanskanen et al.
2005; Watier et al. 2010).

The diversity of outcomes across behavioral studies that have
investigated this issue could be largely attributed to substan-
tial differences between experiments in terms of stimulation
(e.g., number of individual faces, physical variability between
faces, variable stimulus duration, different methods of spatial
filtering through quantization, filters or band-pass noise added
to images, etc.) and task requirements (matching pictures of
the same identity against different distractors, identifying single
pictures of familiar faces, categorizing familiar and unfamil-
iar faces, etc.). However, despite these methodological differ-
ences, previous studies also have in common 3 characteristics
that may limit their conclusions. First, participants in these
experiments are typically asked to recognize familiar or (more
often) familiarized facial identities with only one picture per
face, well segmented from its natural background and without
diagnostic external cues (e.g., the hair), usually at full-front
view only, among a visually homogenous set of faces. Yet, as
particularly emphasized in human face recognition research in
the last decade, using natural (i.e., unsegmented) images of faces
that are widely variable in viewing conditions (e.g., lighting,
head orientation, expression, etc.) for a given identity greatly
increases the validity of facial recognition measures (e.g., Burton
2013; Young & Burton 2017). To date, the spatial resolution
required to recognize face identities in such natural stimulus
conditions remains unknown. Second, previous studies have
used “explicit” recognition tasks varying substantially in terms
of memory-related, attentional, and decisional processes, which
may contribute greatly to the variability of findings across stud-
ies (Ruiz-Soler & Beltran 2006). However, FFR in neurotypical
human adults is largely automatic (i.e., not under volitional
control, e.g., Yan, Young, & Andrews 2017; Yan & Rossion 2020)
and therefore does not require explicit tasks. Measuring FFR in
an implicit manner would be particularly welcome to minimize
variability due to task requirements and provide a stable mea-
sure of FFR under various spatial frequency contents. Finally,
most SF studies with face stimuli presented those stimuli for
a relatively long (or even unlimited) time, allowing observers
to explore them with eye-movements that can introduce unde-
sirable confounds (i.e., substantial variations of number of eye
fixations and saccadic length with spatial frequency content;
Ojanpaa & Nasanen 2003 for faces; see also Groner et al. 2008;
Tavassoli et al. 2009). This is particularly unfortunate because
familiar faces can usually be recognized very rapidly, even at
a single glance (Barragan-jason et al. 2015; Caharel et al. 2014;
di Oleggio Castello & Gobbini 2015; Hacker et al. 2019; Hsiao &
Cottrell 2008; Yan & Rossion 2020), making long presentation
durations unnecessary.

Here, taking into account all of these issues at once, we pro-
vide an implicit measure of human FFR as a function of spatial
frequency with briefly presented natural and variable views of
facial identities. To do so, we rely on a dynamic visual stimu-
lation paradigm in which variable natural (i.e., unsegmented)
images of unfamiliar faces alternate at a fixed rate of 6 Hz (i.e.,

6 images by second) (Fig. 1), allowing human observers only a
single glance at each face identity. Critically, highly variable
images of different familiar (i.e., famous) face identities are
embedded every second (i.e., 1 Hz) in the stimulation sequence
(Fig. 1). Thus, in the high-density electroencephalogram (EEG)
recordings of these participants, neural activity at 6 Hz reflects
general visual processes common to all face stimuli, whereas
activity at 1 Hz (and harmonics), if present, reflect a specific
response to familiar faces (i.e., a neural measure of FFR) (Yan &
Rossion 2020; see also Campbell et al. 2020; Yan, Zimmermann, &
Rossion 2020; Zimmermann, Yan, & Rossion 2019). Importantly,
given that many (i.e., 20) different natural views of each (familiar
and unfamiliar) identity and 6 different familiar face identi-
ties are presented in a stimulation sequence, the FFR response
obtained in the EEG is not tied to identity-related physical prop-
erties of these images (see Yan & Rossion 2020). Accordingly, and
in line with large effects of picture-plane inversion observed in
behavioral measures of face identity recognition or face famil-
iarity judgments (e.g., Busigny & Rossion 2010; Collishaw & Hole
2000; Yin 1969), the FFR neural response is reduced of about
83% of amplitude when the exact same stimuli appear upside-
down, preserving all physical differences between images (Yan
& Rossion 2020).

Here we evaluate this neural measure of FFR in a sweep
frequency-tagging paradigm (Regan 1973; see e.g., Ales et al.
2012; Quek et al. 2018 for face stimuli) by presenting spatially
low-pass filtered images that progressively increase in SF con-
tent (i.e., coarse-to-fine presentation mode; CF; Fig. 2) in half
of the stimulation sequences. Importantly, in the other half of
stimulation sequences, the order of presentation is reversed, so
that the highest resolution images progressively decrease in SF
content, as if they were progressively low-pass filtered (i.e., fine-
to-coarse, FC, Supplementary Fig. S1). The comparison between
the results obtained in the CF and FC sequences (Bruner & Potter
1964) provides answer to the second question of interest of our
study: “whether rapid and automatic FFR is affected by the tem-
poral order of spatial information presentation, and if so how?”
That is, given the same level of image spatial resolution, is there
any recognition advantage when the familiar face identity has
already—recently—been viewed at a higher spatial resolution
(i.e., including more details)? On the one hand, a FC mode of
stimulation, in which information is progressively lost, should
provide observers with an advantage in recognizing familiar
faces at a lower level of spatial resolution than in a CF mode, in
which information progressively accumulates (i.e., a perceptual
hysteresis effect in the temporal integration of high and low
SF face information, see Bruner & Potter 1964; Brady & Oliva
2012). This hypothesis is in line with the influential predictive
coding framework, according to which our prior experiences
are constantly used to form predictions of upcoming events to
ensure efficient processing (Friston 2005; Rao & Ballard 1999; see
Trapp, Pascucci, & Chelazzi 2021 for a recent discussion of per-
ceptual hysteresis and predictive coding). On the other hand, the
visual system is thought to naturally accumulate information
in a coarse-to-fine manner, that is, with lower resolution cues
being extracted before finer details (Bachmann 1991; Goffaux et
al. 2011; Hegdé 2008; Parker et al. 1992; Petras et al. 2019; Sergent
1986; Watt 1987). Hence, according to this latter view, recognition
based on higher details—or high spatial frequency cues—in a
face stimulus should rather be facilitated when lower resolution
information has been presented before, as in a “natural” order. To
contrast these predictions, in both stimulation modes, we mea-
sure the threshold, that is, the spatial frequency content level
at which the first (in the CF condition)/last (in the FC condition)
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SF STEP 1 2 3 5 6 7 8 9
cycles/image (cpi) 3 4.15 5.7 7.92 10.95 15.14 20.93 28.94 40
cycles/degree (cpd) 0.31 0.43 0.59 0.81 1.13 1.56 2.15 2.98 4.12
cycles/head width 1.92 2.66 3.65 5.07 7.01 9.69 13.4 18.52 25.6
(cphw) (SD) (0.23) (0.31) (0.43) (0.6) (0.82) (1.14) (1.57) (2.17) (3.01)

STEP1 STEP2 STEP3 STEP4

Example 1

Example 2

STEPS STEP6 STEP7 STEP8 STEP9

YYD

Figure 1. (A) The table indicates the low-pass SF cutoffs in terms of different units as used in the present study. Cycles/head width (cphw) was calculated based on
the mean head width across all 120 familiar faces. Values in the parentheses indicate standard deviation of the mean. (B) Example face images filtered at each of the
9 logarithmic cut-off values. Face images shown here are with license permits. For license information, Nicolas Sarkozy, and Emmanuel Macron: Pictures under the
Creative Commons Attribution 2.0 Generic. Attribution: Tallinn Digital and European People’s Party, respectively.

significant neural FFR response is recorded, the saturation point
(i.e., optimal level for FFR), and the evolution of this response,
that is, whether it increases/decreases progressively or abruptly.

Materials and Methods
Participants

We recruited 18 participants in the experiment. The data of
2 participants were excluded due to excessive noise/muscular
artifacts during EEG recording. The final sample consisted of
16 participants (7 females, mean age 22.5+ 1.6 years). All par-
ticipants reported to have normal/corrected-to-normal vision;
none had a history of neurological or psychiatric disorder. They
were all right-handed according to self-report. Written con-
sent was obtained prior to test for a study approved by the
Biomedical Ethical committee of University of Louvain (ref. no.
B403201111965).

Stimuli

Natural face images of 12 male Caucasian celebrities taken from
the internet were used as stimuli. Six of the celebrities were
used as familiar faces (Dany Boon, Emmanuel Macron, Garou, Jean
Dujardin, Nagui, & Nicolas Sarkozy), and another 6 as unfamiliar
faces (Andrzej Piaseczny, Cristi Puiu, Danny Dyer, Dermot Oleary,
Pawel Delag, & Robert Biedron). We used pictures of celebrities in
both cases because they appear in similar contexts and poses,
but our Belgian French-speaking participants were familiar only
with the faces of the first pool of celebrities (which, but for one
identity, was the same as used in the validation of the paradigm
with clear images; Yan & Rossion 2020). This was verified by a
Face Questionnaire acquired after EEG testing (Yan et al. 2020;
Yan & Rossion 2020; Zimmermann et al. 2019). All participants
were very familiar with the faces of the celebrities in the first
pool. Only one participant could not recognize the face of Jean

Dujardin, and another one had trouble recognizing Nagui. Two
other participants could recognize the face of Nagui, but not his
name. None of the participants could recognize the unfamiliar
celebrity faces. We selected 20 different natural face images of
each identity, yielding a total of 120 familiar and 120 unfamiliar
face images. Faces were embedded in their natural background,
varying greatly in orientation, lighting, and overall appearance
(even among different images of the same identity) (Fig. 1; see
also Yan & Rossion 2020). All face stimuli were cropped into a
squared shape with 200 pixels in height/width and transformed
into grayscale. When viewed from 50 cm away, each image
extended to a visual angle of approximately 9.72°. The mean
rectangular region across all 240 face images delimited by the
head (including hair and ears) subtended about a visual angle
of 8 (£ 0.65)° x 6.2 (+ 0.7)° (approximately covering an area of
52.6% =+ 9.8% of the image surface).

We applied a low-pass spatial filter on the images at 9 log-
arithmic cut-off steps (referred to here as SF steps; Quek et
al. 2018). Since most of the image energy is contained in LSF
ranges for natural images, in particular for faces compared with
other nonface categories (e.g., vehicles, animals; Guyader et al.
2017; Keil 2008), we used logarithmic instead of linear cutoffs.
For image processing, we first normalized the full-spectrum
grayscale images to obtain a global luminance with 0 mean
and a standard deviation (SD) equal to 1. Subsequently, filtered
images were obtained by fast Fourier transforming each image
and multiplying the Fourier energy with the Gaussian filters. The
images were low-pass filtered from 3 to 40 cycles/image (cpi)
with 9 steps (Fig. 1). This resulted in a total of 2160 images across
SF steps. Following spatial filtering, the luminance and contrast
of all face images from each SF step were adjusted to match the
mean values of the original full-spectrum image set to guarantee
equal global luminance and contrast value both within and
across SF steps (Quek et al. 2018). Figure 1 also indicates the SF
cutoffs in terms of cycles/degree. Most importantly, here, since
we used natural heterogenous face images without cropping
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STEP1: < 3 cpi
1 s x 7 repetitions

Familiar face presentation frequency = 1 Hz
General stimulus presentation frequency = 6 Hz
(167 ms per stimulus)

- ERHNORE"

STEP2: < 4.15 cpi
1's x 7 repetitions

6th

STEPS: < 28.94 cpi
1's x 7 repetitions

STEP9: < 40 cpi
1 s x 7 repetitions

Figure 2. Schematic illustration of the coarse-to-fine (CF) presentation condition with parametrically increasing SF content at every 7 s throughout the sequence over
63 s (with examples showing the first 2 and last 2 SF steps) (see Supplementary Fig. S1 in supporting information for the fine-to-coarse condition). Unfamiliar (U) faces
were presented at a fixed rate of 6 images by second (i.e., 6 Hz) with different familiar (F) face identities embedded at every 6t image (i.e., 1 Hz). During each sequence,
images were presented through square-wave contrast modulation with no ISI. Face images shown here in the last 2 SF steps as familiar faces are with license permits.
For license information, Jean Dujardin: Pictures licensed under the Creative Commons Attribution-Shared Alike 3.0 Unported. Attribution: Georges Biard. Emmanuel

Macron: public domain.

out external features such as hair and ears, which contribute
significantly to FFR, we report SF values in cycles/head width,
based on the mean head width across all familiar face images.
Since head size varied substantially across face images, we also
report the SD of cycles/head width (Fig. 1A).

Procedure

EEG Testing

The same frequency-tagging method of Yan and Rossion (2020)
was used to measure FFR. Images of unfamiliar faces were
presented at a fixed rate of 6 Hz (i.e., 6 images by second) during
each 63-second sequence, with different familiar faces inserted
at every sixth image (i.e., 1 Hz). Then we used a sweep design
to systematically modulate the image SF contents during each
sequence (Ales et al. 2012; Quek et al. 2018). To be more specific,
in 1 condition, the SF content of the images gradually increased
every 7 s over the course of 9 sequential SF steps (Fig. 2). In this
way, the images initially appeared blurry (i.e., low-pass filtered),
gradually sharpening into full-spectrum image over the course
of 63 s (referred to here as coarse-to-fine, CF condition). In
the other presentation condition, inversely, the SF content of
images gradually “decreased” over the course of 9 sequential SF
steps (see Fig. S1). Therefore, the images in the sequence initially
appeared clearly, with very fine details, gradually becoming

blurry over 63 s (referred to here as fine-to-coarse, FC condition).
Sequences of these 2 presentation conditions were flanked by
7-second pre- and post-ludes which were repetitions of the
first and last SF steps, respectively, in order to reduce the eye-
movements and muscular artifacts induced by the abrupt onset
and offset of flickering stimuli. The total stimulation duration
of a full sequence was 77 s. During each stimulation cycle, the
face images were presented through square-wave contrast mod-
ulation with a 100% contrast of each cycle. In total, participants
had to complete 20 CF and 20 FC sequences with a random order
across 2 blocks (each containing 10 CF and 10 FC sequences).

During each stimulation sequence, the face images were
presented at the center of the screen, with a vertical bar on
each side of the image. The size of the vertical bar was 200
pixels (height) x 4 pixels (width), with a visual angle subtending
9.72 x 1.72° at a distance of 50 cm. The vertical bars appeared
at the beginning of each sequence and disappeared until the
sequence ended. The color of each bar changed 10 times dur-
ing each sequence (from blue to pink, 2-second duration). Par-
ticipants were required to press a space bar as soon and as
accurately as possible when they saw the 2 bars changing color
simultaneously (5 times by average), while at the same time
being instructed to monitor the face images on the screen.
The whole experiment took approximately 90 min, including
breaks.
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EEG Acquisition

The experiment was run in a quiet and low-lit room. The stim-
ulation sequences were presented on a LED monitor (BenQ
XL2420T) with a 1600 x 900 window resolution and a 120 Hz
refresh rate. Stimuli were presented centrally on the screen.
High-density 128-channel EEG was acquired with the ActiveTwo
Biosemi system (Biosemi, Amsterdam, the Netherlands) at a
512 Hz sampling rate. The magnitude of the offset of all elec-
trodes, referenced to the common mode sense, was held below
30 pV. Vertical and horizontal electrooculogram was recorded
using 4 additional flat-type active-electrodes: 2 electrodes above
and below the participant’s right orbit and 2 lateral to the
external canthi of the 2 eyes.

Analysis

EEG Preprocessing

EEG data analysis was carried out in the free software Letswave
5 (http://www.nocions.org/letswave) running on Matlab R2018a
(MathWorks, USA). EEG data were first band-pass filtered
between 0.05 and 100 Hz with a fourth order zero-phase
Butterworth filter and then down-sampled to 256 Hz to reduce
computational load. The data sequence was then segmented
relative to the starting trigger of each trial, with an additional
2 second before and after each sequence (-2 to 79 s). To
correct for eye blinks, an independent component analysis was
applied for 3 participants who blinked more than 0.2 times/s on
average throughout the testing sequences (0.15+0.13 blinks/s;
Retter & Rossion 2016). Individual channels with artifacts were
interpolated by their 3 neighboring channels. The maximum
number of interpolated channels for each participant was 6
(1.6 £ 1.8 channels). The cleaned-up data was then referenced to
the average of all 128 channels.

EEG Frequency Domain Analysis

The preprocessed data were cropped again into epochs accord-
ing to each SF step (9 x 7 s epochs). The first (prelude) and last
(postlude) 7 s of each stimulation sequence were discarded to
remove eye-movements and transients related to the abrupt
onset and offset of the flickering stimuli. A Fast Fourier Trans-
form was applied to each averaged SF step epoch and the ampli-
tude spectra were extracted, with a frequency resolution of
0.143 Hz (1/7 s). To correct for variations in baseline noise level
around each frequency of interest, 2 methods were used: (1)
the mean amplitude of the neighboring 6 bins (3 by each side)
were calculated and divided from each target frequency bin
to display EEG spectra in signal-to-noise ratio, allowing bet-
ter visualization of small responses (Retter & Rossion 2016)
and (2) subtraction of the EEG noise from target bins (base-
line subtraction) to quantify responses in microvolt. At each
SF step, the FFR response was quantified with a summation
of response at 1 Hz and harmonics up to 9 Hz (excluding 6 Hz
that coincided with the general visual stimuli presentation fre-
quency) (Retter & Rossion 2016; see e.g., Yan, et al. 2020; Zimmer-
mann, et al. 2019). The general visual response was quantified
with a summation of the first 8 harmonics at 6 Hz (i.e.,, up
to 48 Hz).

To investigate FFR as a function of SF steps, a 10-channel
bilateral occipitotemporal (OT) region of interest (ROI) was
defined as a priori, in line with previous studies that showed
the maximum responses to faces versus nonface objects (Retter
& Rossion 2016; Quek et al. 2018) or to familiar compared with

unknown faces (Yan, et al. 2020; Yan & Rossion 2020; Zimmer-
mann, et al. 2019). The OT ROl included channels P7, P9, PO7,PO9,
PO11 over the left hemisphere, and channels P8, P10, PO8, PO10,
PO12 over the right hemisphere. The general visual response
was observed over a comparatively larger ROI centered over the
most posterior electrodes. Based on the general visual response
topographies across SF steps and conditions, we defined a large
posterior ROI including 16 channels in the bilateral OT region
(i.e., P5&6, P7&8, P9&10, PPO3&4, PPO5&6, PO7&8, PO9&10, and
PO11&12) and 15 channels (i.e., PO3&4 h, POO5&6, 01&2, POI1&2,
11&2, POz, POOz, Oz, Olz, and Iz) in the medial occipital region.

Further data analysis mainly includes 3 parts. First, paramet-
ric statistical analyses were carried out using repeated measured
ANOVAs for both FFR and the general visual responses. Green-
house-Geisser corrections were applied to degrees of freedom
whenever the assumption of sphericity was violated. Pairwise
t-tests were used for post-hoc comparisons and Bonferroni cor-
rections were applied for multiple comparisons. Second, we
measured the FFR threshold (i.e., significantly above 0) in each
presentation condition (i.e., CF and FC) with a bootstrap method:
(1) 16 data points (i.e., 16 participants) were randomly drawn
with replacement from each SF step and the mean of the drawn
points was computed; (2) the procedure was repeated 5000
times; (3) the mean and 95% confidence interval of the result-
ing distribution from step (2) were calculated. The recognition
threshold was defined at the first SF step (i.e., in the CF condi-
tion) when the confidence interval did not overlap with 0. Third,
we modeled the relationship between the response amplitudes
and SF steps to describe the response patterns of the general
visual responses of each presentation condition. We built a
power function (y=axx?) and a linear function (y=a x x+Db)
separately for both conditions. In both cases, y indicates the
response amplitudes and x indicates the SF steps.

Results
The Neural FFR Response as a Function of SF Content

Figure 3 shows the averaged frequency spectra of FFR at 1 Hz
(and harmonics) across the 2 presentation conditions at each
SF step over the OT ROI. Significant harmonics (above EEG
noise) emerged at step 5, when images were low-pass filtered at
10.95 cycles/image (cpi, corresponding to about 7.01 + 0.82 cphw,
i.e., <8.65 cphw for 96% of the images). The recognition response
mainly locates over the posterior region of the head, especially
over bilateral OT region.

To investigate the FFR as a function of SF steps at different
presentation conditions, we first ran a repeated-ANOVA with
Condition (CF, FC) and SF step as within-subjects factors across
all 128 channels averaged together. The results only showed
a significant main effect of SF step, F(8,120)=3.24, P <0.01,
n?=0.18. No other effects were significant (both Ps>0.1). We
then ran a repeated-ANOVA with Hemisphere (Left, Right),
SF step, and Condition (CF, FC) as within-subjects factors
over the OT ROI. Again, we only found a significant main
effect of SF step, F(8,120)=10.52, P <0.001, %2=0.41. The main
effect of Hemisphere was not significant, F(1,15)=2.6, P> 0.1,
n?=0.02, indicating that there was no hemispheric difference
over the OT ROI (Fig.4). No other effects were significant
(all Ps > 0.1).

Although the ANOVA did not show effects of presentation
conditions on response amplitudes, clear differences in
response patterns across SF steps were visible between the 2
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Figure 3. Grand-averaged frequency spectra in signal-to-noise ratio across conditions as a function of SF steps over the OT ROI for FFR. The frequency bins at every
1 Hz step (up to 5 Hz) are highlighted in red dashed lines. Three-D topographies of the first 5 harmonics of 1 Hz are shown above their corresponding harmonics.

presentation conditions (Fig. 4). To investigate these observa-
tions, we used a bootstrap statistical method to determine the
recognition threshold (i.e., starting to be significantly above 0)
at each presentation condition (see Methods part). For the CF
condition, familiar faces could be reliably recognized already
at step 5 (i.e,, 10.95 cpi). When considering SF information
according to head width, this step 5 corresponds to a low-
pass filter below 8.65 cycles/head width (cphw) for most of the
familiar faces (115 of 120, i.e., 96%; Fig. 5A). In contrast, for the
FC condition, the recognition threshold shifted by one step (step
6), that is, when images were low-pass filtered at 15.14 cpi (i.e.,
<11.97 cphw for 96% of the images). In addition, the recognition
response to faces low-pass filtered at 10.95 cpi (i.e., <8.65 cphw)
was significantly larger in the CF condition than that in the
FC condition (t;;s5)=2.94, P <0.01). Familiar and unfamiliar face
exemplars that were filtered one step below or at 10.95 cpi are
shown in Figure 5B.

In both the CF and FC conditions, the increase of EEG ampli-
tude (as the SF content accumulated), marking the onset (in
terms of SF cutoff) of the FFR neural response was abrupt, with
the remaining increase in SF content having little or no effect
on the response amplitude (Fig. 4). Supporting this observation,

an ANOVA restricted to SF steps 5-9 in the CF condition failed
to show any effect of frequency steps (P> 0.1), and an ANOVA
restricted to SF steps 6-9 in the FC condition did not show any
effect of frequency steps, either (P> 0.1).

General Visual Response as a Function of SF Steps

The general stimulation rate of 6 Hz elicited significant general
visual responses at the first 8 consecutive harmonics (i.e., 6 Hz,
12 Hz, and so forth) across all participants and presentation con-
ditions for each SF step, with this response located mainly over
the posterior regions. In general, the overall response amplitude
increased gradually as the SF content of the images increased
from 3 to 40 cpi (Figure S3B). The spatial distribution of neural
responses shifted from the middle occipital regions to a larger
posterior area including both the middle occipital and bilateral
OT regions when more SF information was presented.

There was a difference in response patterns between the
2 temporal presentation conditions: in the CF condition, the
response increased only slightly (34%) and smoothly from
the coarsest stimuli to the highest resolution stimuli. In
contrast, in the FC condition, the response dropped much
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Figure 4. FFR response. (A) Grand-averaged FFR as a function of SF steps (i.e., from 3 to 40 cpi) at the 2 presentation conditions (CF, left panel; FC, right panel) over
different ROIs (left OT, right OT, and OT). Error bars indicate standard error of the mean. (B) Three-D scalp topographies averaged across all participants of each SF step.

more largely (85%) and linearly as finer cues disappeared
from the stimuli (Fig. 6). These patterns were further modeled
with the response amplitudes and the SF steps for each
presentation condition over the posterior ROI. The response
pattern of the CF condition fitted well with a power function,
y=3.4x x%1-2 (adjusted R? =0.939), better than a linear function,
y=0.07 x x+ 1.5 (adjusted R?=0.827). In the FC condition, the
response pattern fitted comparably well to a linear function,
y=0.14 x x+1.2 (adjusted R?=0.995), or to a power function,
y=0.16 x x> + 1.2 (adjusted R? =0.993).

We also ran repeated-ANOVAs with SF step and Condition
as within-subjects factors on the summed-harmonic baseline-
corrected response amplitudes across all 128 channels and over
the posterior ROI, separately. There was no effect of Condition
(both Ps>0.1). However, there were significant main effects
of SF step (all channels: F(8,120)=29.38, P <0.001, »?=0.66;
posterior ROI: F(8,120) = 26.88, P < 0.001, »? = 0.64). The interaction
of SF step x Condition was also significant (all channels:
F(8,120)=4.9, P <0.001, n%2=0.25; posterior ROI: F(8,120)=3.73,
P <0.001, »?=0.2). Further analyses indicated that for both
presentation conditions, there were significant main effects
of SF step (both Ps < 0.01).

Discussion

We took advantage of a recently developed frequency-tagging
paradigm to measure automatic FFR under time constraints (i.e.,

single glance) in order to define the level of spatial resolution
necessary and sufficient to perform this key function for the
human brain. As in previous studies with unfiltered images, the
neural FFR response was objectively identified in the EEG spec-
trum at 1 Hz (and harmonics), over bilateral OT channels (Yan
& Rossion 2020). The lack of significant right hemispheric lat-
eralization—typical of face recognition in the human species—
has been discussed in previous studies and attributed to the
definition of the response of interest here, which reflects a direct
contrast between familiar and unfamiliar faces (Campbell et al.
2020; Yan et al. 2020; Zimmermann et al. 2019).

Coarse Information (below 8.65 Luminance
Cycles/Head Width) Suffices for Single-Glanced
Automatic FFR

In the coarse-to-fine stimulation mode, the neural index of FFR
emerged significantly over OT regions for images that were low-
pass filtered with a 10.95 cpi. For our image set with natural
variable images, this value corresponds to 7.01+0.82 cycles by
head width. Below this range (i.e., step 4, 5.07+0.6 cphw), no
significant FFR response was recorded at all (Fig. 3). Hence, our
study shows that the automatic, single-glanced, recognition of a
natural image of a face as being familiar (here famous) among
unknown faces requires more than 6.27 (i.e., 5.07 4+ 2SD) and up
to about 8.65 (i.e., 7.01+ 2SD) variations of luminance by head
width.
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Figure 5. Stimuli exemplars. (A) Histograms showing the SF information distribution of all 120 familiar face images in cycles/head width (cphw) converted from the
10.95 cycles/image (cpi). For 96% (i.e., 115 of 120) of the stimuli low-pass filtered at 10.95 cpi, the SF cutoff corresponds to less than 8.65 cphw. (B) A few face exemplars
(familiar faces highlighted with dashed outlines) low-pass filtered at 10.95 cpi (i.e., step 5, top panel, a level at which a full FFR response emerged in the CF condition),
and at 7.92 cpi (bottom panel). See Supplementary Figure S2 for the same face exemplars low-pass filtered at the reversed cutoffs (i.e., faces in the left panel were
low-pass filtered at 7.92 cpi, and in the right panel at 10.95 cpi).
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Figure 6. General visual responses. Grand-averaged general visual responses as a function of SF steps at 2 presentation conditions (CF, left panel; FC, right panel) across
all channels and over the posterior ROI, with model estimation of the relationship between the response amplitudes and SF steps. Error bars indicate standard error
of the mean. Solid and dashed lines indicate corresponding estimated function with the model.
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This result was obtained with head widths of about 6.2° on
average in our stimulus set. For a (Caucasian male) head width
of about 15 cm (Farkas 1994), this corresponds to a real face seen
at about 1.39 m of distance, as experienced most frequently
in real life circumstances (Oruc et al.,, 2019). In terms of SF
cycles, our identified threshold therefore corresponds to at
least 1.4 cycles/degree of visual angle. However, (familiar) face
identity recognition is invariant across a wide variety of stimulus
size (Andrews & Ewbank 2004; Lee, Matsumiya, & Wilson 2006;
Oruc& Barton 2010; Zhao & Chubb 2001), so that—unless the face
becomes too small to be resolvable by human visual acuity (see
below)—the relevant value here is the threshold as expressed in
number of cycles/face (Hayes, Morrone, & Burr 1986; Ginsburg
1980; Loftus & Harley 2005; Millward & O’Toole 1986; Parker &
Costen 1999; see also Morrison & Schyns 2001) or cycles/head
width as used in the present study. Although increasing stimulus
size (i.e., decreasing distance) should not lower the threshold
identified for (upright) faces (Oruc& Barton 2010), we cannot
exclude that decreasing stimulus size may slightly improve the
response at 8.65 cycles/head width (Ojanpaa & Nasanen 2003;
Oruc¢& Barton 2010; Shahangian & Oru¢2014; Mousavi & Oruc
2020; but see Hayes et al. 1986) or even lead to a significant
response for the lower step value (5.07 +0.6 cphw, Fig. 5A) used
here. However, the lack of any significant response at this
lower cutoff in our EEG study makes it unlikely. Moreover, if
the stimulus becomes too small (i.e., too far away), the value
of 8.65 cycles/head width may fall below the limit of human
visual acuity. In fact, other factors than stimulus size could
certainly play a more significant role to lower this threshold. For
instance, the threshold could potentially be lowered if pictures
of the familiar faces were less variable, in full color, shown to the
observers before running the study, more frequently repeated,
and not directly contrasted with variable pictures of unfamiliar
faces acting as forward- and backward-masks in the stimulation
sequence (Fig. 1).

Using the same sweep frequency-tagging approach, Quek et
al. (2018) reported that human observers need approximately
1.66 cycles/face width to recognize a visual stimulus as a face
among other nonface objects. Therefore, our findings indicate
that a substantially higher level of spatial resolution is required
for face familiarity recognition. This difference is not surprising
given the much higher physical similarity between the dis-
tractors (i.e., either various object shapes or unfamiliar faces)
and the target stimuli (i.e., either faces or familiar faces) in
the respective measures. The present observation is also in
line with a wealth of evidence indicating that accumulation of
sensory signals in the human brain reaches a threshold earlier
for recognizing a face as a face than for recognizing it as being
familiar or accessing its identity (Sergent 1986; see Amihai et al.
2011; Barragan-Jason, Lachat, & Barbeau 2012; Besson et al. 2017
for direct comparisons).

The neural threshold of 8.65 cycles/head width as identified
here for the first time with physically variable stimuli roughly
agrees with a number of behavioral studies that reported the
largest drops of face recognition performance below about
8 cycles/face (Bachmann 1991; Bachmann & Kahusk 1997;
Costen et al. 1994, 1996; Fiorentini et al. 1983; Gold et al. 1999;
Hayes, Morrone, & Burr 1986; Oruc¢& Barton 2010; Parker &
Costen 1999; Peli et al. 1991; Peli et al. 1994). Although there
are early reports of famous faces with external features being
well recognized even at lower spatial resolution (Harmon 1973;
Harmon & Julesz 1973; Ginsburg 1980; Rubin & Siegel 1984;
see also Sinha 2002; Yip & Sinha 2002), there was usually no

systematic data recorded in these reports and, most importantly,
recognition was limited to a few iconic pictures of faces (e.g., the
quantized picture of Lincoln in Harmon 1973; Harmon & Julesz
1973; see also the face celebrities in Fig. 1 of Sinha 2002).

FFR Saturates at 8.65 Cycles/Head Width

Another important, and striking, aspect of the present findings
is that, in the coarse-to-fine presentation mode, the neural
FFR response already saturated at this low-pass cutoff (i.e.,
<8.65 cycles/head width), that is, it did not increase further
when images increased in spatial resolution (Fig. 4A, left panel).
Similarly, in the fine-to-coarse stimulation mode, the drop of the
FFR response was equally abrupt (Fig. 4A, right panel), albeit at
a higher cut-off value. This observation is in line with studies
as mentioned above and in the introduction (Bachmann 1991;
Costen et al. 1994; Oruc& Barton 2010; Peli et al. 1994) and is
difficult to reconcile with the prevalent view in the scientific
literature that a medium range of SF, of about 8-16 cycles/-
face, would be optimal for face identity recognition (i.e., “The
golden mean”; e.g., Collin et al. 2006; Costen et al. 1994, 1996;
Fiorentini et al. 1983; Gao & Maurer 2011; Gold et al. 1999; Keil
2008; Nasanen 1999; Parker & Costen 1999; Ojanpaa & Nésdnen
2003; Schyns et al. 2002; see also Collin et al. 2012 for human
electrophysiological evidence). A number of reasons could be
advanced to explain the significantly lower threshold value
found here.

First, to elicit a significant neural FFR response, the present
paradigm does not require access to the specific identity of
the familiar face, but only to distinguish a familiar face (irre-
spective of its specific identity) from unfamiliar faces. Yet, to
access familiarity, each familiar face must be distinguished at
the individual level from other (unfamiliar) faces presented
in the sequence so that this difference is unlikely to play a
significant role in the low threshold observed here.

Second, and most importantly, studies that support the key
contribution of the medium SF range of about 8-16 cycles/face
usually use homogenous face stimuli in which the external
features, such as the hair (and sometimes the ears), are removed
(Bachmann 1991; Gao & Maurer 2011; Gold et al. 1999; Hsiao et al.
2005; Nasanen 1999; Tanskanen et al. 2005; Ramon et al. 2015; see
also Morrisson & Schyns 2001 for review). From a methodological
point of view, the removal of external features and facial hair in
stimulus sets is valid and important because these studies usu-
ally rely on unfamiliar face matching or old/new face recognition
tasks, with only one full-front image per face identity. However,
facial hair and external features constitute relatively coarse
diagnostic cues of identity (Abudarham & Yovel 2016; Sinha &
Poggio 1996) and their removal undoubtedly increases stimu-
lus homogeneity and impairs identity recognizability (Bonner,
Burton, & Bruce 2003; Johnston & Edmonds 2009). Hence, these
manipulations are likely to promote the reliance on diagnostic
cues available at higher SF ranges than the 8.65 cycles/face
width threshold identified in the present study. Here, impor-
tantly, since our neural measure relies on the recognition of
previously unseen and highly variable numerous (20) images
of different familiar identities against variable distractors, the
presence of coarse external features or facial hair is not a
confounding factor. In addition, the face stimuli used in the
present study are not segmented from their natural background
and vary substantially in viewing conditions (e.g., head ori-
entation, size, lighting), making their recognition particularly
challenging.
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Third, contrary to most of the previous studies (but see Bach-
mann 1991; Bachmann & Kahusk 1997; Ramon et al. 2015), the
SF threshold for FFR is estimated here in a “dynamic” SF display
rather than with static images presented at different cutoffs. A
major finding of the present study, indeed, is that the temporal
dynamics matters, since the 8.65 cycles/head width threshold
was reached only in the coarse-to-fine presentation mode. Had
we used only a fine-to-coarse stimulation mode, our conclusions
regarding the SF threshold would have been relatively more in
line with the outcome of behavioral studies. This point is further
discussed below.

Fourth, our measure is taken in challenging conditions,
allowing only 166 ms of display per face (i.e., one gaze fixation)
and with each face being forward- and backward-masked by
other faces. Although this is in line with evidence for rapid,
single-glanced, recognition of facial identities (Barragan-jason
et al. 2015; Caharel et al. 2014; Hacker et al. 2019; Hsiao &
Cottrell 2008; di Oleggio Castello & Gobbini 2015; Yan & Rossion
2020), and can be compared with the ecological experience of
automatically and unexpectedly recognizing a familiar face in
a dynamic crowd of strangers, this stimulation mode certainly
prevents a slower detailed analysis of facial features relying on
higher SF ranges.

Finally, an obvious difference with previous studies is that
an implicit, or task-free, neural measure is recorded here, as
opposed to explicit behavioral measures in previous studies.
As mentioned above, in the previous study providing a neural
(fMRI) measure of human FFR in a coarse-to-fine display (Ramon
et al. 2015), an explicit behavioral task was used. Although an
average RT of 10.09 cycles/face was found for familiar decisions,
faces were classified as unfamiliar only after 16.97 cycles/face,
showing again that decisional factors play a significant role in
the estimation of thresholds in such explicit behavioral tasks
(see also Bruner & Potter 1964).

In summary, our task-free EEG measure with natural
unsegmented images suggests that in the presence of SF
up to 8.65 cycles/head width, additional “medium-range” SF
are redundant for FFR, supporting the conclusions of early
behavioral studies (Bachmann 1991; Costen et al. 1994; Peli
et al. 1994; Oru¢ & Barton 2010) and extending them to the
automatic single-glanced, recognition of natural (unsegmented)
heterogenous views of familiar faces.

Overall, these findings agree with clinical observations
according to which low-level visual defects, in particular
low visual acuity, does not prevent familiar face (identity)
recognition in the real world and preserves this function
compared with the spectacular impairment observed in brain-
damaged cases of prosopagnosia (de Haan et al. 1995). In
the same vein, although a decrease of contrast sensitivity of
high spatial frequency in the normal elderly population may
cause poor face identity recognition performance in certain
tasks (e.g., Cronin-Golomb et al. 2007; Owsley, Sekuler, & Boldt
1981), the ability to recognize familiar faces in this population
should be preserved if evaluated with the present paradigm.
More generally, our observations provide useful and objective
information to help assessing a high-level ecological visual
recognition function such as FFR, in populations with low-level
visual impairments at adulthood and also during development,
normal or pathological aging (e.g., cortical visual impairment;
amblyopia; glaucoma; age-related macular degeneration; Glen
et al. 2012; Lane et al., 2018a, 2018b).

Moreover, since relatively low resolution images are
sufficient for FFR even in challenging stimulation conditions,

this finding has important practical implications for developing
valid face recognition and image compression algorithms
(Adjabi et al. 2020; Bachmann 2016; Goffaux 2016; Strang &
Nguyen 1996).

At the theoretical level, these observations suggest that
visual representations of familiar faces are quite coarse (Sergent
1986; Sinha 2002). Such coarse visual representations may
provide substantial advantages in terms of neural coding,
making it resistant to noise and distortions (Hole et al. 2002),
which is key to efficient FFR (Burton 2013; Young & Burton
2017). Matching low-level sensory inputs to coarse visual
representations of faces is also much more efficient if these
representations are holistic, that is, undecomposed in parts
or features (Collishaw & Hole 2000; Goffaux & Rossion 2006;
Rossion 2013; Sergent 1986; Tanaka & Farah 1993; Young et
al. 1987). Indeed, although isolated facial parts, or parts that
are presented in disrupted configurations, of previously seen
images can be recognized above chance level when presented
at high resolution, recognition of such isolated/disconfigured
parts would be extremely challenging if not impossible at a
coarse level of resolution as identified here (Schwaninger et al.
2002).

An All-or-None FFR Response?

A logical conclusion of the points discussed in the 2 sections
above is that the threshold and saturation points for FFR are
the same, suggesting an all-or-none recognition response. This
abrupt neural response function differs from the relatively more
gradual increase in amplitude observed in the general visual
response common to all faces (i.e., familiar and unfamiliar faces)
over posterior electrodes (Fig.6). Most importantly, it differs
from the face-selective response obtained (over the same OT
electrodes) from human observers when natural images of faces
are progressively revealed in a coarse-to-fine display among
images of nonface objects (with similarly space SF steps; Quek
et al. 2018). Although this gradual increase was interpreted in
terms of progressive accumulation of evidence for recognition,
it may also reflect an abrupt, all-or-none visual recognition of
each individual stimulus in the sequence, the overall gradual
increase in response amplitude reflecting the increasing num-
ber of stimuli being recognized (in an all-or-none fashion) in the
sequence (Retter et al. 2020). Regardless of the correct account
for the previous observations in generic face recognition, the all-
or-none FFR neural response identified here suggests that the
progressive accumulation of sensory information takes place
in low-level visual regions before matching representations of
familiar faces in higher order regions of the visual cortex. Once
this match is registered, a threshold for recognition is reached,
and unless specific explicit analysis of the face identity would
be required, further sensory information at higher SF does not
need to be added.

The Coarse-to-Fine Advantage for FFR

A second major finding of the present study is that recognition
of familiar faces was affected by the temporal dynamics of
presentation mode, since different recognition thresholds were
reached in different conditions. That is, compared with the fine-
to-coarse condition, fewer spatial frequency details (i.e., 8.65 vs.
11.97 cycles/head width) were required to elicit a full recognition
response in the coarse-to-fine condition. Interestingly, this type
of asymmetry between coarse-to-fine versus fine-to-coarse SF
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stimulation conditions in electrophysiological recordings has
not been observed with low-level visual stimuli (e.g., gratings or
checkerboards to measure visual acuity; Almogbel et al. 2011,
Hemptinne et al. 2018; see Hamilton et al. 2021 for review).

The coarse-to-fine advantage in familiarity recognition also
seems at odd with the perceptual hysteresis effects obtained
with SF-filtered faces (Brady & Oliva 2012; see also Bruner &
Potter 1964). In Brady & Oliva (2012), participants were asked
to recognize approaching (i.e., coarse-to-fine) versus receding
(i.e., fine-to-coarse) hybrid displays (i.e., superimpositions of
different LSF and HSF images). It is only in the receding, fine-
to-coarse, condition, that perceptual hysteresis took place with
participants being able to hold previous experience of stimulus
details to make inferences about the receding (progressively
coarser) input stimulus. In contrast, in the approaching coarse-
to-fine condition, there was no advantage of previously seeing a
coarser version of the stimulus.

Two reasons could explain the discrepancy between these
observations and the coarse-to-fine advantage of the FFR as
observed here. First, we tested FFR across different identities,
and with different, widely variable, natural face images for
each identity. This heterogeneity in the stimulus set prevented
participants’ reliance on nonidentity-related image-based cues,
whereas the use of the exact same face images in hysteresis
and hindsight studies likely encouraged image-based strategies.
Second, since we used different familiar face identities in each
sequence with a random presentation at every fixed sixth image,
together with a rapid and challenging presentation mode, the
visual system might be hindered to make a rapid hypothesis
based on previous experiences. Regardless, our findings do not
support a hypothesis of the predictive coding framework accord-
ing to which hypotheses based on previous experiences are con-
tinuously updated to predict the upcoming percept (Friston 2005;
Rao & Ballard 1999; see also Trapp et al. 2021). Indeed, according
to this framework, since the identity information gained with
fine-detailed faces at the beginning of each sequence could be
used to predict the upcoming more blurred images, a lower
recognition threshold could have been anticipated in the fine-
to-coarse condition. Conversely, our results are in line with the
prevalence of coarse-to-fine sequencing of sensory information
processing in the human brain for complex stimuli such as faces
(Bachmann 1991; Hegdé 2008; Goffaux et al. 2011; Petras et al.
2019; Parker et al. 1992, 1997; Sergent 1986; Vogelsang et al. 2018;
Watt 1987). In natural conditions, we see faces from further away
before they come closer for recognition, but not, or rarely, the
opposite (i.e., people moving away turn their back to us). There-
fore, we rarely experience a fine-to-coarse presentation mode, in
which fine details of faces are removed progressively. Moreover,
it also reflects natural experience during development, since
typically developing newborns commence their visual experi-
ence with remarkably poor visual acuity (Atkinson & Braddick
2013; Dobson & Teller 1978) due to immature neonatal retina
(Banks & Bennett 1988) as well as to immaturities in the visual
cortex (Jacobs & Blakemore 1988). Over the initial months of
development, these immaturities diminish steadily, leading to
acuity improvement and the integration of information at higher
SF (Atkinson & Braddick 2013; Daw 2014), which may be par-
ticularly useful for the development of their normal ability to
recognize facial identity based on visual inputs only (Le Grand
et al. 2003; Vogelsang et al. 2018).

The coarse-to-fine view is also supported here by findings
for the general visual response common to faces: although there
was a smooth amplitude increase of this posterior response in

the coarse-to-fine condition as more SF content of faces was
accumulated, the response amplitude seemed to decrease more
abruptly in the fine-to-coarse condition when faces became
blurry (Fig. 6). This observation may suggest that spatial infor-
mation in a coarse-to-fine sequence is integrated more effi-
ciently than that in the reverse sequence. Most importantly,
the abrupt emergence of the neural FFR response at an ear-
lier step in the coarse-to-fine than in the fine-to-coarse mode
provides original and particularly strong neural evidence sup-
porting the coarse-to-fine processing view, showing that the
automatic, single-glanced, recognition of a natural view of a
familiar face in a temporal crowd of unfamiliar faces benefit
from an accumulation of sensory cues in a naturally experienced
order.

Supplementary Material

Supplementary material can be found at Cerebral Cortex online.
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