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Abstract

Neuroimaging studies have reported regions with more neural activation to face than nonface stimuli in the human occipitotemporal
cortex for three decades. Here we used a highly sensitive and reliable frequency-tagging functional magnetic resonance imaging
paradigm measuring high-level face-selective neural activity to assess interindividual variability in the localization and number of
face-selective clusters. Although the majority of these clusters are located in the same cortical gyri and sulci across 25 adult brains,
a volume-based analysis of unsmoothed data reveals a large amount of interindividual variability in their spatial distribution and
number, particularly in the ventral occipitotemporal cortex. In contrast to the widely held assumption, these face-selective clusters
cannot be objectively related on a one-to-one basis across individual brains, do not correspond to a single cytoarchitectonic region,
and are not clearly demarcated by estimated posteroanterior cytoarchitectonic borders. Interindividual variability in localization and
number of cortical face-selective clusters does not appear to be due to the measurement noise but seems to be genuine, casting doubt
on definite labeling and interindividual correspondence of face-selective “areas” and questioning their a priori definition based on
cytoarchitectony or probabilistic atlases of independent datasets. These observations challenge conventional models of human face
recognition based on a fixed number of discrete neurofunctional information processing stages.
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Introduction
Since the seminal positron emission tomography (PET)
study of Sergent et al. (1992), neuroimaging studies car-
ried out for three decades, mainly with functional mag-
netic resonance imaging (fMRI), have disclosed clusters
of voxels with more neural activation to pictures of faces
than nonface visual stimuli in the human brain (e.g., Puce
et al. 1995; Kanwisher et al. 1997; Halgren et al. 1999;
Ishai et al. 2005; Fox et al. 2009; Weiner and Grill-Spector
2010; Rossion et al. 2012; Zhen et al. 2015; Gao et al.
2018; Schwarz et al. 2019; Finzi et al. 2021). Despite a
substantial amount of variability in the paradigms and
stimuli used across fMRI studies (Duncan et al. 2009;
Berman et al. 2010), these “face-selective” clusters have
been reported in consistent gross anatomical structures
across studies, mainly in both the ventral occipitotempo-
ral cortex (VOTC) and the superior temporal sulcus (STS).

The different fMRI-defined face-selective clusters of
the human occipitotemporal cortex have been labeled

according to the anatomical region where they are usu-
ally disclosed. For instance, the well-known “fusiform
face area” (FFA, labeled by Kanwisher et al. 1997) is a
face-selective cluster identified in the middle section of
the anterior–posterior axis of the fusiform gyrus, while
the “occipital face area” (OFA, labeled by Gauthier et al.
2000) is typically identified in the lateral section of the
inferior occipital gyrus. Following this logic, up to six
face-selective clusters, that is, four in the VOTC (OFA,
posterior FFA [pFFA], middle FFA [mFFA], anterior tempo-
ral lobe face area [ATL-FA]) and two in the STS (posterior
[pSTS-FA], anterior [aSTS-FA] STS face area, respectively),
have been defined in the most recent neurofunctional
model of human face recognition (Duchaine and Yovel
2015; for earlier models, see Haxby et al. 2000; Calder
and Young 2005; Ishai 2008; Rossion 2008; Haxby and
Gobbini 2011). These face-selective clusters of voxels
are thought to contain populations of (millions of) neu-
rons (Logothetis 2008), which, by definition, must play
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a key role in the recognition of a visual stimulus as
a face.1 Beyond this generic face recognition function,
many fMRI studies have tested the sensitivity of these
face-selective clusters—in particular the FFA—to phys-
ical stimulus manipulations (e.g., position, size, head
orientation, and various image statistics; see, e.g., Tong
et al. 2000; Levy et al. 2001; Yue et al. 2011; Rice et al.
2014; Finzi et al. 2021), to attention (e.g., O’Craven et al.
1999; Peelen et al. 2009), and conscious perception (e.g.,
Tong et al. 1998; Andrews et al. 2002; Fang and He 2005),
and investigated their putative role in finer grained facial
recognition functions (e.g., face familiarity and identity,
facial expression, eye gaze direction, etc.; for reviews, see
Haxby and Gobbini 2011; Rossion 2014; Duchaine and
Yovel 2015; Grill-Spector et al. 2017). Another important
line of research focuses on the origin and developmental
trajectory of these fMRI face-selective clusters (Golarai
et al. 2007, 2015; Scherf et al. 2011).

In these studies, the face-selective cortical clusters are
considered to be discrete components, that is, informa-
tion processing stages, of a well-defined neurofunctional
network in the human brain, with a definite pattern of
anatomofunctional connectivity (Fairhall and Ishai 2007;
Gschwind et al. 2012; Pyles et al. 2013; Frässle et al.
2016; Weiner et al. 2017; Elbich et al. 2019; Wang et al.
2020; Kessler et al. 2021). Comparative studies have also
attempted to relate these face-selective neural clusters
one-by-one across different species of the primate order
(macaques and humans: Tsao et al. 2008; Rajimehr et al.
2009; Yovel and Freiwald 2013; marmosets to macaques
and humans: Hung et al. 2015; see Weiner and Grill-Spec-
tor 2015).

Overall, the ultimate objectives of this ongoing
research program are to 1) define each component of the
human cortical face network, 2) determine its anatomi-
cal features and intrinsic/extrinsic anatomicofunctional
connections, and 3) understand the nature of its local
representations and processes (Grill-Spector et al. 2017;
see also Freiwald 2020 and Hesse and Tsao 2020 in
nonhuman primates). For instance, in humans, fMRI
studies have associated face-selective regions of the
human STS with dynamic aspects of face recognition
(e.g., facial expression, eye gaze, and head orientation)
whereas those in the VOTC are instead thought to be
predominantly involved in more stable aspects of face
recognition (e.g., identity, gender, etc.) (Allison et al. 2000;
Haxby et al. 2000; Bernstein and Yovel 2015; Duchaine
and Yovel 2015; Pitcher and Ungerleider 2021). In both
the STS and VOTC pathways, the prevalent view is that
of a progressive, hierarchical evolution in the degree of

1 In psychology, the term “recognition” often implies a judgment of pre-
vious occurrence [specifically “the ability to identify information as having
been encountered before,” APA Dictionary of Psychology; see also Mandler 1980].
However, the term is used here in a general biological meaning to refer to the
production of a selective [i.e., discriminant] response to a given sensory input,
a response that can be reproduced [i.e., generalized] across variable viewing
conditions. As defined, face recognition is essentially the same function as
face categorization [Rossion and Retter 2020], and the two terms are used
interchangeably in this article.

view invariance and complexity of facial representation
from posterior to anterior face-selective regions (e.g.,
Duchaine and Yovel 2015; Meyers et al. 2015; Weiner
et al. 2017; Tsantani et al. 2021).

A key assumption of this research study is therefore
that all neurotypical adult individual brains hold the
same number of neurofunctional clusters/regions, with
each region restricted to one cytoarchitectonic area
(Weiner et al. 2017), and with the set of regions organized
along the same pattern of anatomicofunctional connec-
tivity (i.e., a general “face connectome”; Wang et al. 2020).
Based on this assumption, probabilistic atlases are being
increasingly developed to define these face-selective
clusters/regions in a new individual brain based on its
cortical anatomy and using functional data collected on
an independent set of typical participants (Julian et al.
2012; Engell and McCarthy 2013; Rosenke et al. 2021).

However, although there are undoubtedly large-scale
anatomical constraints common to all individual brain
for the localization of face-selective clusters (e.g., in the
lateral rather than the medial section of the fusiform
gyrus, Weiner and Grill-Spector 2010, 2012; Weiner et al.
2017; Margalit et al. 2020; see also Jonas et al. 2016; Hagen
et al. 2020 for intracerebral recording evidence), there is
also a sheer amount of variability in terms of level of
face selectivity, size, and anatomical localization of these
fMRI clusters across individual brains (Rossion et al. 2012;
Zhen et al. 2015; Schwarz et al. 2019). Interindividual
variability in volume and/or level of face selectivity of
some of these clusters has been well acknowledged from
the outset (e.g., Kanwisher et al. 1997; Rossion et al.
2003; Gauthier et al. 2005; Pinsk et al. 2009) and some-
times even successfully correlated with behavioral per-
formance at face identity recognition (Jiang et al. 2013;
Huang et al. 2014; Weibert and Andrews 2015; Elbich
and Scherf 2017; Hermann et al. 2017; McGugin et al.
2018). Interindividual variability of peak location of face-
selective clusters, often the FFA and OFA, is also well
known, ranging from several millimeters to centimeters
(Kanwisher et al. 1997; Rossion et al. 2003; Fox et al. 2009;
Pinsk et al. 2009; Pitcher et al. 2011; Rossion et al. 2012;
Zhen et al. 2015; Schwarz et al. 2019).

To our knowledge, a potentially genuine interindivid-
ual variability in terms of the “number” of face-selective
clusters in the human brain has only been raised in
one large-scale (n = 40) fMRI face localizer study (Ros-
sion et al. 2012). The following study of Zhen et al.
(2015), performed on 202 participants, reported a large
amount of variability in anatomical localization of face-
selective clusters but, in contrast, a fixed number (6) of
face-selective clusters that were searched for in each
individual brain. Hence, even in a study that addressed
and emphasized interindividual variability in anatom-
ical localization of face-selective clusters, the number
of face-selective clusters across individuals was held
constant a priori, as in all other fMRI face localizer stud-
ies investigating the whole cortical face network (e.g.,
Wang et al. 2020). This approach is not surprising because
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authentic interindividual variability in terms of the num-
ber of face-selective clusters in the human brain would
pose a substantial challenge for neurofunctional models
of human face recognition (and systems neuroscience in
general). That is, if neurotypical individual brains truly
have different numbers of face-selective clusters, span-
ning over different cytoarchitectonic brain areas, how
could one generalize across individual brains to precisely
define the nature of representations and processes per-
formed in each of these “components” and relate them
intelligibly in a generic neurofunctional architecture?

The present fMRI study focuses on this issue of
interindividual variability in terms of anatomical local-
ization and spatial extent/distribution of face-selective
clusters and, especially, in terms of their number in the
human occipitotemporal cortex and STS. Its major goal
is to describe and quantify this variability and assess
whether it is real or if it is rather due to measurement
noise. To do that, a relatively large sample of participants
for assessing and visualizing interindividual variability
(n = 25) was tested with a face localizer fMRI experiment
recently developed and validated with a smaller sample
(Gao et al. 2018; see also Gao et al. 2019). The paradigm
used to localize face-selective clusters relies on the
presentation of a large set of natural (i.e., unsegmented)
and highly variable images of nonface stimuli of multiple
living and nonliving categories at a fast (6 images/s,
6 Hz) periodic rate, with “mini-bursts” of natural images
of faces appearing every 9 s, that is, at 0.111 Hz
(Fig. 1A). A large set of natural images of faces varying
in size, luminance, contrast, head orientation, lighting
conditions, gender, expression, etc. (Fig. 1A) is used to
ensure that selective neural responses to the category of
faces are not due to low-level visual cues (i.e., low-level
image statistics contained in the amplitude spectrum
of the images, or specific local features such as the
hairline contrast or the same features falling in the same
positions as with homogenous segmented stimulus sets).

As this frequency-tagging paradigm provides objectiv-
ity to identifying significant neural activity (i.e., at a pre-
defined frequency; Fig. 1B), high sensitivity (i.e., signal-to-
noise ratio, SNR), and high test–retest reliability (80–90%)
to disclose face-selective neural activity in the human
occipitotemporal cortex (Gao et al. 2018), it is ideal to
fully address the issue of interindividual variability in
anatomical localization and number of cortical face-
selective clusters in the human brain. Across the 25
participants tested with this paradigm, the mean and
standard deviation of the activated volume, maximum
SNR, number of face-selective clusters and number of
local maxima were defined here for four anatomically
defined regions-of-interest (ROIs): the lateral occipital
(LO) cortex, middle fusiform (midFus) cortex, anterior
temporal lobe (ATL), and posterior STS (pSTS) (see
Materials and Methods). Although the cortical gray mat-
ter distance can be underestimated with volume-based
rather than cortical surface visualizations in individuals

(Weiner and Grill-Spector 2011), face-selective clusters
were defined in original volumetric space rather than in
a surface-based space to prevent any potential artificial
dissociation of clusters in the process of mapping from
volumetric space to surface space. Importantly, spatially
unsmoothed data was used in order to prevent artificially
merging individual clusters as a result of smoothing
(e.g., Weiner and Grill-Spector 2012), thereby preserving
potential interindividual variability.

With this approach, we report a large amount of
interindividual variability in spatial extent, distribution,
and number of face-selective clusters in the VOTC and
STS regions. As across individuals the number of clusters
is not related to the total face-selective volume activated,
maximal SNR, or statistical threshold used, our data
suggest that this interindividual variability is genuine.
Although face-selective clusters in the VOTC are largely
confined to the lateral rather than the medial fusiform
gyrus in line with previous observations (Weiner and
Grill-Spector 2012; Weiner et al. 2017), there is no system-
atic association between atlas-based cytoarchitectonic
regions and face-selective clusters in the posteroanterior
axis. These observations have important implications
for investigating and understanding the neural basis of
human face recognition.

Materials and Methods
Participants
We collected fMRI data from a total of 25 adult
participants (16 female, mean age = 30 ± 5.7 years, age
range = 21–44 years), among whom 15 were tested
at York University, Canada, and 10 were tested at
Maastricht University, the Netherlands. Data of a subset
of participants (n = 12) were reported in a previous
methodological work demonstrating the high sensitivity,
specificity, and reliability of the fMRI “face localizer”
used (Gao et al. 2018). All the participants had normal
or corrected-to-normal vision and were right handed
(Oldfield 1971). None of the participants reported any
history of psychiatric or neurological disorders or current
use of any psychoactive medications. The study was
approved by York University Research Ethics Board and
the Ethical Committee of the Medical Department of the
University of Louvain, Belgium. We obtained informed
written consent from all the participants prior to the
experimental sessions, and the participants received
monetary compensation for their participation in the
study.

Stimuli
As in Gao et al. (2018), the stimuli consisted of 100
face images and 200 nonface images. The face images
were digital photographs of 100 different individuals who
were nonfamous relatives, friends, and colleagues of the
researchers of the Face Categorization Lab then at the
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Figure 1. Experimental paradigm (from Gao et al. 2018). (A) During the scanning run, variable natural images of nonface stimuli are presented at a
fast rate of 6 Hz (6 images/s). Every 9 s (0.111 Hz), a “mini-burst” of 7 highly variable face images alternates with nonface images, covering a period
of 2.167 s. This procedure prevents category-based adaptation effects within a mini-block and, with a stimulus-onset asynchrony of 333 ms between
two faces, allows capturing the bulk of every underlying face-selective response (Retter and Rossion 2016). These two factors contribute to the high
signal-to-noise ratio of the face-selective activation observed with this approach (Gao et al. 2018). The frequency of face bursts (0.111 Hz) is referred to
as the face stimulation frequency with a signal at 0.111 Hz in the fMRI spectrum, reflecting face-selective activity. (B) In one example brain, the highest
face-selective activity at 0.111 Hz as found in the right lateral middle fusiform gyrus, with no increased 0.111 Hz activity to the same images matched
for low-level properties (amplitude spectrum) but phase-scrambled to prevent face or object recognition.

University of Louvain in Belgium. Therefore, they were
unfamiliar to the participants. Each photograph con-
tained one human face. The photographs were origi-
nally taken for personal purposes and were given to the
researchers with a completed consent form to use these
photographs for research purposes and display them.
They contain a natural range of variation in size, pose,
and expression of the faces depicted in the photographs
and in lighting and background. The nonface images con-
sist of 200 photographs of scenes, objects, and animals.
As in the face images, the nonface images also contain a
natural range of variation in the composition and lighting
of the images. The face images have a mean grayscale
intensity value of 115.0 ± 1 and a mean contrast value
of 0.49 ± 0.11. The nonface object images have a mean
grayscale intensity value of 115.2 ± 0.9 and a mean con-
trast value of 0.46 ± 0.12. On average, there is no sta-
tistical difference between the two sets of images on
either the grayscale intensity value (t298 = 1.8, P = 0.068,

two-tailed) or the image contrast (t298 = 0.7, P = 0.49, two-
tailed).

The images were back-projected in full color onto a
projection screen by an MRI compatible LCD projector
and viewed by the participant through a mirror placed
within the RF head coil at a viewing distance of 43 cm
(York University) or 75 cm (Maastricht University). They
extended the same visual angle (14.6 × 14.6 degree) at
both viewing distances (or 11 × 11 cm on the screen at
York University and 19.2 × 19.2 cm at Maastricht Univer-
sity). The remaining area of the screen was set to a uni-
form gray background. The whole experiment procedure
was controlled through a stimulation program running
in Java, which also collected behavioral responses.

FMRI Paradigm
We used the same fMRI paradigm as described in Gao
et al. 2018. The images were displayed at a base rate
of 6 Hz (i.e., 6 images/s, Fig. 1A), thus with a stimulus
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onset asynchrony (SOA) of 166.7 ms (10 screen refresh
cycles at a refresh rate of 60 Hz), allowing only one gaze
fixation per image. Images were contrast modulated by
a sinusoidal function so that each image appeared at 0%
contrast, reached 100% contrast at the sixth frame and
then dropped its contrast to 9.55% at the 10th frame.
Every 9 s, a set of 7 faces (referred to as a “mini-burst,”
covering 2.167 s, the red bins in Fig. 1A) appeared at a
rate of 3 Hz, that is, alternating with nonface images
(blue bins in Fig. 1A). Each run had a length of 396 s
so that the mini-burst appeared 44 times at a fixed
frequency of 1/9 Hz (i.e., 0.111 Hz, referred to as the
face stimulation frequency). For each presentation, an
image was drawn from the corresponding image set (face
or nonface) according to a random order. When all the
images in the respective sets had been presented, a new
random order was generated and the images were drawn
according to this new random order.

Behavioral Task
Participants performed a behavioral task, orthogonal to
the measure of interest. They were instructed to press
a predefined key on an MRI compatible response pad
using the right index finger when they detected color
changes of the central crosshairs (+) superimposed on
the images (Rossion et al. 2015; Gao et al. 2018). The
crosshairs extended a visual angle of 1.2 degrees in the
center of the screen. During each run, the color of the
crosshairs changed from black to white for 200 ms, for a
total of 70 times with the interval between two changes
randomized while keeping above a minimal interval of
2 s. All participants achieved high accuracy (mean accu-
racy = 91.2% ± 2.0) in the behavioral task.

MR Image Acquisition
For participants at York University, we acquired the
MRI images using a 3 T Siemens Magnetom Trio
system (Siemens Medical System) with a 32-channel
head coil. Anatomic images were collected using a
high-resolution T1-weighted magnetization-prepared
gradient-echo image (MP-RAGE) sequence (192 sagittal
slices, TR = 2300 ms, TE = 2.62 ms, voxel size = 1 mm
isotropic, FA = 9◦, FoV = 256 × 256 mm2, matrix size = 256
× 256, parallel scanning mode = GRAPPA, accelerate
factor = 2). Functional images were collected with a
T2∗-weighted gradient-echo echoplanar imaging (EPI)
sequence (TR = 1500 ms, TE = 30 ms, FA = 62◦, voxel
size = 3 mm isotropic, FoV = 192 × 192 mm2, matrix
size = 64 × 64, interleaved, parallel scanning mode = -
GRAPPA, accelerate factor = 2), which acquired 25
oblique-axial slices covering the whole occipital lobe and
the whole temporal lobe. For participants at Maastricht
University, we acquired the MRI images using a 3 T
Siemens Magnetom Prisma scanner (Siemens Medical
System) with a 64-channel head–neck coil. Anatomic
images were collected using a high-resolution T1-
weighted magnetization-prepared gradient-echo image
(MP-RAGE) sequence (192 sagittal slices, TR = 2250 ms,

TE = 2.21 ms, voxel size = 1-mm isotropic, FA = 9◦, FoV =
256 × 256 mm2, matrix size = 256 × 256). Functional
images were collected with a T2∗ weighted gradient-
echo echoplanar imaging (EPI) sequence (TR = 1500 ms,
TE = 30 ms, FA = 72◦, voxel size = 3-mm isotropic, FoV =
240 × 240 mm2, matrix size = 64 × 64, interleaved), which
acquired 23 oblique-axial slices covering the whole
occipital lobe and the whole temporal lobe. In both scan-
ners, each functional run took 414 s. All 25 participants
performed at least two scanning runs, and a subset of
participants (n = 13) who were not involved in another
fMRI experiment subsequently performed an additional
run of the face localizer.

Data Analysis
Preprocessing

The functional runs were motion-corrected in reference
to the average image of the first functional run of the
experiment using a 6◦ rigid body translation and rotation
via an intra-modal volume linear registration using the
FMRIB software library (FSL, version 5.0.8, Smith et al.
2004). We then removed linear trends from the prepro-
cessed time series data of each voxel and converted the
time series data to percentage of blood oxygen level–
dependent (BOLD) signal change by dividing the time
series of each voxel by its mean signal intensity. No
spatial smoothing was performed on the data.

SNR of the Face-Selective Response

As in Gao et al. (2018), for each scanning run, we per-
formed fast Fourier transform (FFT) to obtain the ampli-
tude spectrum of the BOLD response time series. To
gauge the strength of the BOLD response at the face
stimulation frequency (the signal) relative to the noise,
we converted the amplitude of the face stimulation fre-
quency (0.111 Hz) to a Z-score as in previous studies
(McCarthy et al. 1994; Puce et al. 1995). Intrinsically, a z-
score is a measure of SNR. Therefore, we referred to the
Z-scores to as SNR of the face-selective neural responses:

SNR = (As − μN)/σN, (1)

where As is the amplitude of the face stimulation fre-
quency, μN is the mean and σN is the standard deviation
of the amplitude of 40 neighboring frequencies (20 on
each side, e.g., Rossion et al. 2015, Jonas et al. 2016). This
procedure is applied to each voxel independently. Across
runs, the responses to the periodic face stimulations in a
given population of neurons have the same phase, while
any noise from a periodic source (e.g., pulse, breathing)
could have different phases. Therefore, we averaged the
time series across scanning runs to increase the signal-
to-noise ratio, similarly to the use of this approach in
electrophysiology (Regan 1989). The averaged time series
across runs was submitted to the same calculation as
with the data from individual runs. This analysis is per-
formed with custom code based on Matlab (Mathworks).
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The code and example data are publicly available on
https://www.nitrc.org/projects/fpsfmri_face/.

Defining Activation and Deactivation of Neural Responses

As in Gao et al. (2018), we defined the activation and
deactivation of the neural response using the phase of
the BOLD response at the stimulation frequency. In gen-
eral, a positive phase value indicates an increasing BOLD
response amplitude after the onset of the face stimuli,
whereas a negative phase value indicates a decreasing
BOLD response amplitude after the onset of the face
stimuli. To account for individual differences in the time
to reach maximum BOLD response amplitude, for each
individual we calculated the histogram (20 bins) of phase
values of all the voxels with a criterion of z-score > 3 and
with a positive phase value. We used the phase value of
the histogram bin that has the largest number as the
center phase (ϕ) and defined all the voxels with their
phase values within ϕ ± π/2 as activations (+ sign) and
voxels with their phase values outside of this window
as deactivations (− sign). We then applied the signs to
the SNR (Z-score) maps and obtained the final response
map containing only voxels that have increased BOLD
response (+ sign) to the presence of the target stimuli.

Criteria for Defining Face-Selective Voxels

Given the high sensitivity of the paradigm and the objec-
tives of the study, we deliberately used a conservative
two-step criterion to define face-selective voxels. In the
first step, we selected the voxels that are consistently
above a threshold level in each scanning run. For par-
ticipants who performed three scanning runs (n = 13),
we used a threshold level of (Z > 1.2816), so that the
joint probability of having all three runs greater than the
threshold at a given voxel is P < 0.001. For participants
who performed two scanning runs (n = 12), we used a
threshold level of (Z > 1.8575), so that the joint proba-
bility of having both runs greater than the threshold
at a given voxel is also P < 0.001). We define the vox-
els that are selected by the first step as the “consis-
tent voxels.” In the second step, within the consistent
voxels, we further selected voxels above a threshold of
(Z > 3.719,P < 0.0001), based on the SNR values calculated
from the run-averaged time series. We estimated the
false discovery rate by applying the above criteria to
SNR values calculated for two noise frequencies (±2 of
the target frequency). On average, at the noise frequen-
cies, the false discovery rate is of 0.001 ± 0.0012. Hence,
we are confident that truly face-selective voxels were
selected, avoiding an overestimation of the number of
face-selective clusters in individual brains.

Cluster Analysis

We identified face-selective clusters of voxels that are
connected to each other by at least a corner, with
a minimal volume of 81 mm3 (3 voxels at the size
of 3 × 3 × 3 mm3) in volumetric space. We compared
the clusters identified by the volumetric clustering to

clusters identified by surface-based cluster analysis
with the volumetric functional data projected onto
individual cortical surface (using Freesurfer). As project-
ing volumetric data to cortical surface can artificially
separate a single cluster in volumetric space to different
clusters in the cortical surface (Supplementary Fig.
1), clustering in volumetric space appears to capture
the number of clusters more accurately than surface-
based clustering (Supplementary Table 1). To gauge how
reliable these face-selective clusters are, we calculated
the Dice Coefficient between the voxels in these face-
selective clusters within the anatomically defined
Fusiform gyrus and all the face-selective voxels in each
individual scanning runs within the same ROI with a
conservative threshold of (Z >3.719). On average, we
achieved a Dice Coefficient of 0.81 (SD = 0.12, with a
3-mm FWHM smoothing, as in Gao et al. 2018) or 0.77
(SD = 0.11, without spatial smoothing). Therefore, the
face-selective clusters identified here are highly reliable.

Identifying Local Maxima

Within the face-selective clusters defined in the above
step, we identified local maxima with a minimal Z-score
of 5 and a minimal separation distance of 10 mm from
other local maxima. Finding more than one local maxima
in the same cluster suggests that, with a higher threshold
(or alternatively, a less sensitive face localizer paradigm)
a continuous cluster may be identified as several clus-
ters. At the same time, as the threshold for defining
local maxima (Z ≥ 5) is higher than the threshold for
defining clusters (Z > 3.719), there could be cases of no
local maxima within a face-selective cluster.

Anatomical ROIs

For each individual brain, we labeled cortical regions
using an automated algorithm as part of the Freesurfer
processing pipeline. This algorithm defines the cortical
areas based on folding patterns and has been validated
to have high accuracy (Destrieux et al. 2010). From the
resulting labels generated by Freesurfer, we combined
the fusiform gyrus (G_occipit-temp_lat-Or_fusiform) and
fusiform sulcus (S_occipitotemporal_lateral) from the
automated labels to form a fusiform ROI. We combined
the anterior occipital sulcus (S_occipital_anterior),
inferior occipital gyrus (G_and_S_occipital_inferior),
middle occipital gyrus (G_occipital_middle) and sulcus
(S_occipital_middle_and_Lunatus) to form a lateral
occipital ROI. We selected the automatically labeled
superior temporal sulcus (S_temporal_superior) as the
STS ROI. We defined an anterior/posterior boundary as
the posterior end of the hippocampus (Kim et al. 2000).
Based on this anterior/posterior boundary, the fusiform
ROI and the STS ROI are both divided into an anterior part
and a posterior part. We further combined the anterior
fusiform with an automatically labeled anterior OTS
(S_collateral_transverse_ant as defined in the atlas, but
it is the OTS) and the temporal pole (Pole_temporal) to
form an ATL ROI. Therefore, for each individual brain,
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Figure 2. ROIs defined based on automatic algorithms using the surface folding pattern (Freesurfer). The anterior/posterior boundary was defined as
the posterior end of the hippocampus (Kim et al. 2000). Left: Automatically labeled cortical areas based on folding pattern by Freesurfer. Right: The four
ROIs selected for the current study: Anterior temporal lobe (ATL), posterior STS (pSTS), middle fusiform (midFus), and lateral occipital (LO).

within each hemisphere, we defined four ROIs: lateral
occipital (LO), middle fusiform (midFus), ATL, and pSTS
(Fig. 2).

Complementary Study: Face- and Limb-Selective
Activity
To test the possibility that the spatial organization
of face-selective clusters identified with the present
face-localizer paradigm could be due to or modulated
by selective neural activity to nonface body parts
(Weiner and Grill-Spector 2010), we ran an additional
experiment comparing face-selective clusters and limb-
selective clusters in a small group of participants (n = 4).
In brief, each participant performed a face-localizer
task (2 runs) and a limb-localizer task (2 runs), with
the same procedure as in the main experiment (see
Supplementary Methods for details). We identified face-
and limb-selective clusters of voxels with the same
criterion (Z >3.719, cluster size > 81 mm3) as in the
main experiment, and defined the face-selective clusters
within the anatomically defined lateral occipital ROI
and fusiform ROI with all the voxels that overlap with
significant limb-selective voxels removed.

Results
Group Averaging Reveals Large-Scale Anatomical
Constraints of Face-Selective Activation
First, we describe the group averaged face-selective acti-
vations and relate them to typical regions reported in the
literature. To provide a first overview of interindividual
variability/consistency in localization of neural activity,
we also report the degree of overlap in statistical signif-
icance at the voxel level among individual participants.
To do so, we averaged the binarized activation maps
across individual brains using a surface-based intersub-
ject coregistration procedure, and displayed the activa-
tion probability map on an averaged cortical surface
of all the participants (Fig. 3A). The resulting activation
probability map shows that face-selective activation is
both confined and extended at a group level, that is, it
concerns essentially along the ventral and dorsal surface

of the LO cortex, ventrally running anteriorly along the
lateral fusiform gyrus, and dorsally onto the pSTS. The
highest activation overlap at the voxel level reached
0.88 (22 out of 25 participants), with 55 voxels (1 mm3

isovoxel) in the right middle fusiform gyrus above an
overlap index of 0.8. With a cut-off activation probability
of 0.12 (i.e., 3 of 25 participants; as reference, a cut-off
of 0.1 was used in Zhen et al. 2015), there is no break
in the pSTS-LO-Fusiform continuum. However, ventrally,
the middle fusiform sulcus serves as a sharp boundary,
where the activation is confined to the lateral side of the
fusiform gyrus without extending into the medial side
(Fig. 3A). This finding is fully consistent with proposal
that the middle-fusiform sulcus is an anatomical bound-
ary of face-selective activation (Weiner and Grill-Spector
2012; Weiner et al. 2017; Weiner 2019). The same pattern
is observed in the left hemisphere (Supplementary Fig. 2).

The distribution of the individual local maxima
(Fig. 3B) follows a similar pattern as seen in the activation
probability map. The local maxima are distributed
in the same pSTS–LO–fusiform continuum, without
any obvious break within this continuum. Within the
fusiform gyrus, most of the local maxima are located
on the lateral side, following along the middle fusiform
sulcus as a sharp boundary. Both the activation map
and the distribution of the local maxima show a drop in
the anterior temporal lobe, between the anterior portion
of the fusiform gyrus and the temporal pole (Fig. 3C).
This drop is likely to be a result of the characteristic
signal drop out in the anterior portion of the ventral
temporal lobe due to magnetic susceptibility artifacts
(Wandell 2011; Axelrod and Yovel 2013; see Rossion
et al. 2018). In sum, the group average analysis confirms
that the middle fusiform sulcus serves as a lateral-
medial anatomical boundary of face-selective activation
(Weiner and Grill-Spector 2012; Weiner et al. 2017).
However, at the group level, there is no obvious anterior–
posterior anatomical boundary in the pSTS–LO–fusiform
continuum for either the activation probability map
or the distribution of individual local maxima. In the
current study, the surface-based intersubject coregis-
tration procedure yielded an excellent correspondence
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Figure 3. An inflated cortical surface of the averaged right hemisphere showing: (A) the activation probability map in terms of overlap across individual
brains (plotted from 0.12 = a voxel activated in 3/25 subjects, to 0.88 = 22/25 individuals). For each individual brain, activation was binarized with a
threshold of Z > 3.719 (P < 0.0001, uncorrected). A surface-based intersubject coregistration procedure was used to create a group-average activation
probability map with a cut-off probability of 0.1. (B) Individual local maxima (defined with Z ≥ 5, minimal separation distance = 10 mm) mapped to the
averaged cortical surface of all the participants with a surface-based intersubject coregistration procedure. Individual participants are color-coded, so
that all clusters of a given participant are in the same color. (C) The averaged time series signal-to-noise ratio across all participants displayed on the
averaged cortical surface. A typical signal dropout is seen in the ventral surface of the anterior temporal lobe.

among individual brains, with the highest activation
probability reaching 0.88 even on nonsmoothed data.
However, the continuous pattern of activation seen in the
pSTS–LO–fusiform cortices could be due to—or increased
by—the interindividual variation in brain anatomy and
variation in localization of face-selective regions along
with averaging. Therefore, further investigation on the
localization and extent of face-selective activation at the
individual brain level is required.

Number and Size of Face-Selective Clusters in
Individual Brains
For each individual brain, with all the face-selective vox-
els that are above a threshold of Z >3.719 (uncorrected
P <0.0001), we ran a cluster analysis (3dclusterize, AFNI)
to identify voxels that are connected to each other by at
least a corner, with a minimal cluster volume of 81 mm3

(3 voxels at the size of 3 × 3 × 3 mm3). Figure 4 shows
all the face-selective clusters within the VOTC of the
right hemisphere for each of the 25 participants. While
there is some degree of consistency across the majority of
participants at a gross anatomical level (e.g., the location
and extent of the largest cluster as represented in blue
in Fig. 4), there is a substantial amount of variability in
number and size of face-selective clusters. Among the 25
individual brains, the number of face selective clusters in
the right VOTC varies from 1 to 7 (Fig. 5), with a mode of
3 (mean = 3.4 ± 1.7). Besides variability in the number of
clusters, there is also a substantial amount of variability
in the composition of clusters across individuals (Figs 4
and 5). In some individual brains, there is a large main
cluster in the VOTC spanning across the lateral occipital
cortex and the fusiform gyrus (e.g., S05, S07, S10, S20).
At the same time, other individual brains have several
small clusters scattered in the VOTC (e.g., S03, S09, S22).
While the total volume of face-selective clusters in the
right VOTC varies substantially across individuals (Fig. 5),

the number of face-selective clusters does not covary sig-
nificantly with the total volume of face-selective clusters
in the VOTC (r(25) = 0.34, P = 0.09).

For most individual brains, it is difficult, if not impos-
sible, to fit the face-selective clusters into the common
scheme of one OFA/IOG and one or two FFAs (pFus
and mFus, according to the terminology of Weiner and
Grill-Spector 2010; or pFus-faces and mFus-faces; see
Grill-Spector et al. 2017) in the VOTC. Importantly,
this is not due to spatial smoothing (blurring the
boundary between well-defined clusters) because the
data was not spatially smoothed in the current study.
Also, our observation is not due to the use of a liberal
statistical threshold, as we first selected voxels that
are consistently activated across multiple runs and
applied a relatively conservative threshold (Z > 3.719,
P < 0.0001, uncorrected) compared with the commonly
used thresholds in other fMRI face localizer studies
(e.g., Z = 2.3, P = 0.01, uncorrected in Zhen et al. 2015;
P < 0.002, uncorrected in Weiner and Grill-Spector 2010;
P < 0.001, uncorrected, in Ishai et al. 2005). Such a two-
step procedure to identify face-selective voxels, while
being conservative, ensured high reliability. The difficulty
to assign these face-selective clusters to an OFA and to an
FFA, or to three well-defined clusters (IOG-faces; pFus-
faces, mFus-faces), lies on two aspects. First, in some
individual brains, a single large cluster accounts for more
than 80% of the activated volume in the VOTC and spans
across the middle fusiform gyrus and the lateral occipital
cortex (Figs 4 and 5; e.g., S06, S07, S10, S13, S16, S17, S20,
S24). As there are usually several local maxima within
a cluster (Fig. 5), raising the threshold value in such
cases would lead to a breakdown into smaller clusters.
However, objectively assigning the new clusters to well-
defined OFA and FFA or IOG-faces, pFus-faces, and mFus-
faces would be impossible (Supplementary Fig. 3).

For most of the individual brains, within each of
the anatomically defined lateral occipital cortex and
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Figure 4. Variability in the number and spatial extent of face-selective clusters in the right ventral occipitotemporal cortex (VOTC) across all 25
participants. The number of clusters varies between 1 (e.g., S07; S11; S19) and 7 (S01, S22). All the clusters are displayed within a VOTC mask
(VOTC = LO + midFus + ATL, see Materials and Methods for the definition of the ROIs). Different clusters are coded by different colors, and the number
of clusters in each individual brain is represented by the number of dots below each glass brain. Individual brains are in their native space, aligned to
the AC-PC plane.

posterior fusiform gyrus in the right hemisphere, there
are more than one cluster (up to 5 clusters in LO and
up to 2 clusters in the posterior fusiform gyrus, Fig. 5) at
the current threshold level. Besides, variability in the
number of face-selective clusters is also observed in
the ATL ROI and the pSTS ROI (Fig. 5). In Figure 5, we
also marked the number of local maxima as defined
with Z ≥ 5, and with a minimal separating distance of
10 mm. If the threshold is raised to a level of Z = 5, clusters
should center around these local maxima, leading again
to a substantial amount of variability in the number of
clusters across individual brains. Hence, interindividual
variability across brains in terms of number of clusters
does not appear to result from the particular threshold
used in the main analysis (Z > 3.719).

With the same statistical threshold applied to different
individual brains, variability in the total volume of face-
selective clusters is always expected (Rossion et al. 2012).
Alternatively, a fixed volume of face-selective voxels can
be set for all individual brains. By varying the thresh-
old level for individual brains (an average threshold of

Z = 11.8 ± 3.6, range = 4.2–19.5), we selected the top voxels
(with the highest face-selective SNR), consisting of a fixed
volume of 1000 mm3 in the right hemisphere for each
individual. Even with this fixed volume, there is still
substantial variability in the number of face-selective
clusters, with on average more than one cluster in the LO
and in the middle fusiform gyrus (Fig. 6). At an individual
level, in the ATL and pSTS ROIs, even with only the
top voxels, there are still cases with two face-selective
clusters within each ROI.

Localization of Face-Selective Voxels in
Individual Brains
Even at an individual level, face-selective activation falls
consistently on the lateral rather than the medial side
of the fusiform gyrus (Fig. 7). However, on the anteri-
or/posterior axis along the ventral surface of the tem-
poral lobe, the localization of face-selective activation
varies substantially across individual brains. To quantify
the variation in the localization of face-selective vox-
els along the anterior/posterior axis, we normalized all
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Figure 5. Number and size of face-selective clusters in anatomically defined ROIs in the right ventral occipitotemporal cortex (VOTC). The VOTC consists
of three ROIs: ATL, midFus, and LO. Within the VOTC, we also plotted the volume of each cluster (coded by color) and the volume composition (percentage)
of each cluster. As local maxima were defined with a higher threshold (Z ≥ 5) than the threshold used to define clusters (Z > 3.719), there could be clusters
without any local maxima.

Figure 6. Violin plots showing: (A) number of face-selective clusters in the right hemisphere anatomic ROIs with a threshold of Z > 3.719 (P < 0.0001)
(e.g., 2 individuals have 4 ATL clusters, 1 has 3 clusters, 6 have 2 clusters, etc.). (B) Number of face-selective clusters in the right hemisphere anatomical
ROIs for the top voxels (with the highest face-selective SNR), using a fixed volume of 1000 mm3 for all individuals.
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Figure 7. Face-selective activation (Z > 3.719, P < 0.0001) in the ventral occipitotemporal cortex of the right hemisphere mapped onto a standard cortical
surface. The boundaries of cytoarchitectonic areas FG2 (green) and FG4 (yellow) (Rosenke et al. 2017) are outlined.

the individual brains to a standard template (MNI152)
and then converted them into Talairach space. Figure 8
shows the distribution of face-selective voxels along the
anterior/posterior axis in the VOTC, covering the range
between the middle fusiform gyrus and the temporal
pole. Even after normalization, variations in anatomical
localization are large across individuals. For example, the
location of the posterior end of the hippocampus (the
red lines in Fig. 8), which is used as the boundary to
define the anterior and posterior sections of the tem-
poral lobe, varies substantially in the right hemisphere
(SD = 7.5 mm).

The distribution of face selective voxels along the pos-
terior/anterior axis in the ventral temporal lobe varies
substantially across individuals. In some cases, there is
only one peak of the voxel distribution (e.g., S01, S03,
S12, S19). In other cases, there are multiple peaks (e.g.,
S06, S20, S22) (Fig. 8). This variability seems difficult to
reconcile with the view that localization of face-selective
clusters along the posterior/anterior axis in the VOTC is
tightly bonded to cytoarchitectonic areas, as advocated
by Grill-Spector and colleagues (see Grill-Spector et al.
2017).

Specifically, these authors suggest that two cytoar-
chitectonically defined areas in the fusiform gyrus,
FG2 and FG4, serve as anatomical constraints for
differentiating two different, presumably functionally
distinct, face-selective clusters (pFus-faces and mFus-
faces in their studies, respectively; see Grill-Spector
et al. 2017). To evaluate the validity of this proposed
anatomical border with our dataset of multiple clusters,
we quantitatively tested whether FG2/FG4 derived from

a standard template can provide less overlap between
different face-selective clusters than an arbitrarily
defined boundary along the posterior/anterior axis on
the fusiform gyrus. As shown in Figure 9, we calculated
an overlap index between the two anatomical ROIs and
face-selective clusters. If each face-selective cluster lies
fully within the boundary of anatomically defined ROIs,
then the overlap index would be zero. If all face-selective
clusters span across both anatomically defined ROIs,
then the overlap index would be 1. Any partial overlap
condition would result in an overlap index between 0 and
1 as indicated in Figure 9B. We calculated the overlap
index between standard template-based FG2/FG4 or
FG3/FG4 ROIs (Rosenke et al. 2017) and our face-selective
clusters in the ventral temporal cortex, and compared
it to a control condition with five arbitrarily defined
anatomical ROIs along the VOTC (Fig. 9C). To do that, we
selected five locations (lines) along the posterior/anterior
axis as the boundary that arbitrarily separates the
fusiform gyrus to a posterior ROI and an anterior ROI.
The posterior ROI has the same span as FG2 along
the posterior/anterior axis, while the anterior ROI has
the same span as FG4 along the posterior/anterior
axis.

In both hemispheres, we found an overlap index of
around 0.5 in the control condition. While the FG3/FG4
borders separate face-selective clusters better (i.e., lower
overlap index) than the control condition, especially in
the left hemisphere, the FG2/FG4 borders in both hemi-
spheres were even worse than the control condition in
separating face-selective clusters in the fusiform gyrus
(Fig. 9D).
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Figure 8. Distribution of face-selective voxels in the right ventral temporal lobe along the posterior/anterior axis (Y). The green bars represent the
number of voxels at each of a 3-mm step along the anterior/posterior axis (Y). The red lines mark the location of the posterior end of the hippocampus,
which is used as the boundary separating posterior and anterior portions of the temporal lobe (Kim et al. 2000). See Supplementary Figure 4 for the left
hemisphere.

Figure 9. Overlap index between cytoarchitectonic ROIs and face-selective clusters. (A) Standard template of cytoarchitectonic ROIs including FG2
(purple), FG3 (blue), and FG4 (brown). (B) Definition and demonstration of overlap index. The purple and brown areas represent two anatomical ROIs.
The areas with other colors represent face-selective clusters. C12 represents the number of clusters that overlap with both ROI1 and ROI2. C1 and C2

represent the number of clusters that overlap with ROI1 and ROI2, respectively. (C) Arbitrarily defined ROIs. We selected five locations (lines) on the
ventral temporal lobe as the boundary between two arbitrarily defined ROIs. The ROI posterior to the boundary (purple) has the same span on the
posterior/anterior axis as the FG2, while the ROI anterior to the boundary (brown) has the same span on the posterior/anterior axis as the FG4. (D)
Comparison of mean overlap index between cytoarchitectonic ROIs and arbitrarily defined ROIs (see main text).

The same observations were made when using a
different procedure, following a reviewer’s commentary.
Instead of binarizing, we introduced a tolerance level of
80% to represent the “majority of voxels”; that is, if over
80% of voxels fall within one ROI, then it is scored as 0
(no overlap). With this tolerance level, the overall overlap
index dropped. However, the pattern remained largely
the same: if anything, face-selective clusters are still
more likely to cross the FG2/4 boundary than crossing
an arbitrary boundary anterior to the FG2/4 boundary
(Supplementary Fig. 6).

These results suggest that face-selective clusters in
the VOTC are not organized according to a standard

cytoarchitectonic FG2/FG4 border and thus cannot be
defined a priori based on such a border.

Interindividual Variability in Face-Selective
Clusters Is Independent of Limb-Selective
Activation
Given that our fMRI face localizer is based on natural
images of faces (and objects), some of these stimuli
display limited body cues beyond the face such as the
upper torso or shoulders (Fig. 1; see also examples of
stimuli and videos in, e.g., Quek and Rossion 2017; Gao
et al. 2018; Retter et al. 2020). More generally, the face
being a body part, an fMRI face localizer alone does not
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exclude voxels that would be recruited to body parts in
general without any additional increase in signal to faces
specifically. Thus, it could be argued that our localizer
with natural images overestimates the number of face-
selective voxels, and the number of clusters, in a given
individual brain, in particular with respect to regions of
the brain that respond selectively to body parts or limbs
(Downing et al. 2001; Peelen and Downing 2007; Pinsk
et al. 2009; Schwarzlose et al. 2008; Orlov et al. 2010;
Weiner and Grill-Spector 2012). While there is no reason
to think that this factor would result in an artificial
increase rather than a decrease in interindividual “vari-
ability” of face-selective clusters, we addressed this issue
by testing 4 additional individuals with a new version of
our face localizer paradigm in which faces do not include
other body parts, as well as with a “limb-localizer” based
on the same stimulation principles and parameters (see
Supplementary Methods).

In these four individuals’ brains, we find the typi-
cal face-selective clusters, with a large degree of vari-
ability in size, location, and number of face-selective
clusters, as described in our main experiment (Fig. 10).
Our limb localizer identifies clusters of voxels in typical
regions as described in previous studies with a more
standard approach, namely in the OTS, the inferior tem-
poral gyrus (ITG) and the middle temporal gyrus (MTG)
(Weiner and Grill-Spector 2010). The percentage of over-
lap between the face-selective and limb-selective voxels
is minimal overall (average 27%, range 10–37% for the
four subjects or eight hemispheres). Consequently, and
most importantly, removing all significant limb-selective
voxels (i.e., even those that are less significantly activated
for limbs than faces), has little effect on the pattern of
face-selective activation and does not affect the number
of face-selective clusters in those individuals. For three
(participants 1, 2, and 4) out of four individuals, removing
overlapping limb-selective voxels from the face-selective
voxels did not change the number or spatial distribution
of the face-selective clusters. Only in one individual (par-
ticipant 3), removing limb-selective voxels affected face-
selective clusters in the lateral occipital area, but not in
the fusiform gyrus.

Discussion
Using a recently developed fMRI face localizer provid-
ing high category-selectivity, sensitivity, and test–retest
reliability (Gao et al. 2018), we report here a consider-
able amount of interindividual variability in anatomical
localization, spatial extent and number of face-selective
clusters in both the human VOTC and STS of 25 indi-
vidual brains. Below, we first discuss these findings in
terms of individual variability in anatomical localization
of these clusters, even though this variability has been
already addressed and emphasized previously with a
different approach (Zhen et al. 2015) and is obviously
linked to variations in spatial extent and number of the
face-selective clusters. Then, we summarize and discuss

the interindividual variability in terms of the number
of face-selective clusters, arguing that this variability is
genuine, and finally draw the implications of our obser-
vations for understanding the neural basis of human face
recognition.

Interindividual Consistency and Variability in
Anatomical Localization of Face-Selective
Clusters
It is important to state, at the outset, that the large
variability in anatomical localization of face-selective
clusters across individual brains does not contradict the
anatomical consistency of these clusters, as particularly
emphasized by Weiner, Grill-Spector, and their colleagues
in recent years (Weiner and Grill-Spector 2010, 2012;
Lorenz et al. 2017; Weiner et al. 2017; Margalit et al.
2020; Rosenke et al. 2021). Indeed, focusing on posterior
brain regions, the vast majority of face-selective clusters
across individuals are nested along the VOTC and STS
(Fig. 3). Moreover, within these large-scale regions, face-
selective clusters are found on the same cortical gyri
and sulci across participants, most significantly in the
VOTC, where they are disclosed on the lateral rather
than the medial section of the fusiform gyrus (Fig. 3).
These anatomical localizations are entirely consistent
with previous fMRI face-localizer studies (e.g., Kanwisher
et al. 1997; Fox et al. 2009; Weiner and Grill-Spector 2010;
Rossion et al. 2012; Zhen et al. 2015; Gao et al. 2018;
Schwarz et al. 2019; Rosenke et al. 2021; see also Jonas
et al. 2016; Hagen et al. 2020 for human intracerebral
recording evidence in the VOTC).

However, beyond these general organization prin-
ciples, the large amount of interindividual variability
in anatomical localization/spatial distribution of face-
selective clusters, particularly in the posteroanterior axis
(emphasized here) (Figs 4, 7, and 8), is also striking. In
the ROI defined anatomically as midFus here, in the
right hemisphere, even when considering only the 9
individuals out of 25 in which two clusters/maxima
are identified (i.e., S02, S03, S05, S07, S09, S10, S12, S22,
S24; Fig. 5), there is considerable anatomical variability
in the localization of these clusters with respect to
posterior/anterior boundaries defined on an individual
basis as the posterior tip of the hippocampus (Fig. 8).
Notably, contrary to previous evidence (Lorenz et al. 2017;
Weiner et al. 2017; Rosenke et al. 2021), but in line with
the large-scale study of Zhen et al. (2015), we were unable
to define just one mFus-faces and one pFus-faces cluster
in the right fusiform gyrus in 24 out of 25 participants
(18 out of 25 in the left hemisphere). Furthermore, the
group-defined anatomical border between FG2 and FG4
is not a good predictor of the localization of the clusters
(Fig. 9).

In this respect, we acknowledge that the real cytoarchi-
tectonic individual borders between FG2 and FG4 could
possibly neatly separate two face-selective clusters in our
sample. However, such anatomical borders cannot yet
be defined in vivo, and we used the same probabilistic

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/advance-article/doi/10.1093/cercor/bhab519/6516235 by guest on 18 February 2022

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab519#supplementary-data


14 | Cerebral Cortex, 2022

Figure 10. A comparison of face- and limb-selective areas in four individuals within the right lateral occipital and fusiform ROIs. Upper panel: Face-
and limb-selective voxels in each run (2 runs) and in the averaged run. Middle panel: Face- and limb-selective voxels (averaged run) overlaid with each
other. Bottom panel: Face selective clusters without and with limb-selective voxels removed.

atlas-based approach as in previous studies emphasizing
this distinction (Lorenz et al. 2017; Weiner et al. 2017;
Schwarz et al. 2019). Moreover, when considering FG2 and
FG4 altogether here, most individuals (68% for the right
hemisphere) have fewer or more than 2 face-selective
clusters/maxima. The anatomical variability of the face-
selective clusters is also considerable in the other ROIs
considered in the present study, that is, the STS and ATL,
even though, due to the use of static visual stimuli here
and the drop in SNR due to magnetic susceptibility arti-
facts, the number of clusters is certainly underestimated
in these two latter brain regions.

Overall, our conclusions regarding interindividual
variability in localization of face-selective clusters are
in line with those of the large-scale study of Zhen
et al. (2015). Importantly, we reach these conclusions
here with a quite different approach: while Zhen et al.
(2015) used a dynamic localizer emphasizing face-
selective clusters in the STS, instead, we used an fMRI
localizer in which static natural images are presented
at a fast periodic stimulation rate (Gao et al. 2018,
2019), inspired from validated frequency-tagging studies
in electroencephalography (EEG; e.g., Rossion et al.
2015; Quek and Rossion 2017). Compared with the
study of Zhen et al. (2015), our approach may result
in a reduced face-selective response in the STS, in
particular in its middle and anterior sections (Fig. 3), but

conveys substantial advantages in terms of sensitivity,
specificity and reliability. In particular, thanks to the use
of highly variable natural images rather than stimulus
sets maximizing within-category homogeneity and
systematic shape differences between categories, the
present approach is optimal to exclude spurious “face-
selective” responses in low-level visual areas (Gao et al.
2018). Moreover, compared with this previous study, no
spatial smoothing was applied here.

As Zhen et al. (2015) put it, interindividual variability
in anatomical localization of the face-selective clusters is
not surprising given the considerable amount of variabil-
ity in size and location of cytoarchitectonic (visual) areas
across individuals (e.g., Amunts et al. 1999; Malikovic
et al. 2007; Rottschy et al. 2007; Fischl et al. 2008; Caspers
et al. 2013; Lorenz et al. 2017) as well as interindivid-
ual variability in anatomical connectivity (Bürgel et al.
2006; Vassal et al. 2018; Bernard et al. 2019). On top of
that, different face recognition functions, in particular
face identity recognition, undergo a long developmen-
tal course in the human species (Carey 1992; Hills and
Lewis 2018) and individual adults can vary substantially
in face identity recognition performance (e.g., Bowles
et al. 2009; McCaffery et al. 2018). Therefore, variability
in size, height and localization of face-selective clusters
is certainly increased by the various quantitative and
qualitative experiences in face recognition of different
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individual observers, even in a relatively highly homoge-
nous population (i.e., all young adults, 84% of Caucasian
origin, right-handed). It is also likely that anatomicofunc-
tional connectivity between these clusters varies sub-
stantially across individuals (Bürgel et al. 2006; Mueller
et al. 2013; Chamberland et al. 2017; although see Wang
et al. 2020).

Interindividual Variability in Number
of Face-Selective Clusters
The large degree of interindividual variability in size,
height and spatial extent of face-selective clusters has
long been known, and can in fact be appreciated in
any fMRI study reporting individual data of a given face
localizer. However, despite hinting at such variability in a
previous large-scale study (Rossion et al. 2012; see also
Schwarz et al. 2019), to our knowledge, no fMRI study
has systematically described and emphasized interindi-
vidual variability in the number of face-selective clusters.
In the aforementioned study of Zhen et al. (2015), 6
labeled clusters were a priori defined to be identified
in all individual brains, using interjudges’ agreement to
identify these clusters in different anatomical regions. A
number of clusters were reported as “missing”, and the
number of unlabeled clusters in individual brains were
not reported. Moreover, the substantial spatial smoothing
(i.e., Gaussian filter of 6-mm FWHM) applied to the data
in that study probably merged local maxima and clusters
together (see Supplementary Fig. 5).

In contrast, in the present study, without applying any
spatial smoothing, but nevertheless using conservative
criteria in terms of statistical significance, size (min-
imum of 81 mm3, corresponding to about 2.5 million
of neurons according to neuronal density estimates in
the fusiform gyrus; Chance et al. 2013) and reliability
to identify clusters, the variability in number of clusters
could freely “emerge” from the data. This approach leads
to an impressive amount of interindividual variability in
the number of face-selective clusters, particularly in the
VOTC (including the ATL), where we find between 1 and 7
clusters across our 25 individuals tested (Fig. 5), but also
in the pSTS, where the number of face-selective clusters
varies between 0 and 4 (Fig. 6). Moreover, in many face-
selective clusters, several local maxima can be identified
and could easily constitute clusters of their own if more
severe statistical thresholds were used (Fig. 5; see also
Supplementary Fig. 3).

It is legitimate to wonder whether the interindividual
variability described here is genuine, or simply due to
(variability in) measurement and analysis procedures
(i.e., noise) of the present study. In terms of measure-
ment, here all participants were tested in the same
conditions, with the same stimulation protocol. Although
the stimulation paradigm used is unconventional, it
has been previously validated, showing for instance the
highest average z-score at the group level in the right
hemispheric lateral middle fusiform gyrus at virtually
identical locations as in previous studies (e.g., 42, −54,

−14 in Talairach coordinates here, for 40, −55, −10 in
Kanwisher et al. 1997 with a block design localizer; 42,
−51, −14 in Zhen et al. 2015 with a dynamic localizer)
and an extremely high spatial overlap (91% ± 8%) in the
Fusiform Gyrus with a conventional (block design) mode
of stimulation using the same—balanced number—
of face and nonface object stimuli (Gao et al. 2018).
Moreover, the surface maps presented here are very
similar to surface maps shown in other studies (e.g.,
Figs 3 and 7 here vs. Fig. 4 in Weiner and Grill-Spector
2010).

As the present frequency-tagging face localizer has
increased sensitivity (i.e., SNR), one could argue that this
is a key factor leading to an increase in number and
interindividual variability in the VOTC and STS com-
pared with other face localizers. However, contrary to
standard stimulation modes and localizers performed
with more homogenous stimulus sets for both faces
and the compared object stimuli (e.g., Rice et al. 2014),
the paradigm used here eliminates the contributions
of low-level visual cues contained in the image ampli-
tude spectrum (Gao et al. 2018), which could have arti-
ficially increased interindividual variability in the num-
ber of significant clusters. Moreover, despite its high
sensitivity and internal reliability (see Gao et al. 2018),
if anything, due to the use of static images and the
inevitable drop of SNR in the ATL particularly with con-
ventional fMRI sequences (Wandell 2011; Axelrod and
Yovel 2013; Rossion et al. 2018; Fig. 3), the present study
rather certainly underestimates the number and degree
of interindividual variability in face-selective clusters, in
particular in the STS and in the anterior portions of the
VOTC.

An issue worth considering is the relatively high rate
of visual stimulation in our paradigm, with a stimulus
onset asynchrony of only 166 ms between each face
and a nonface object stimulus (Fig. 1). EEG frequency-
tagging studies with this paradigm have shown compa-
rable amplitude and interindividual variability of face-
selective activity at 6 Hz and much slower rates (i.e.,
3 Hz), and no decrease in amplitude with increasing rates
to 12 Hz, and little decrease up to 20 Hz (Retter et al. 2020),
indicating that a 6 Hz rate is not too fast to elicit a full
face-selective response in every individual. Moreover, the
alternation between a face and nonface stimulus within
a “mini-burst” (Fig. 1) does not only minimize category-
based adaptation effects (as in conventional fMRI block
designs) but provides an SOA of 333 ms between two face
stimuli, allowing to capture the bulk of the neural face-
selective response elicited by each stimulus (Retter and
Rossion 2016), these two factors contributing to the very
high SNR observed with this paradigm (Gao et al. 2018).
Finally, a 6-Hz stimulation rate is also largely sufficient
to even individuate each presented face (Retter et al.
2021), and ensures that there is only a single glance
at each face stimulus, reducing differential eye move-
ments between individual subjects that could artificially
increase interindividual variability.
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A more important issue is the type of comparison
that is performed, that is, faces versus all types of liv-
ing and nonliving object categories mixed up together
to identify face-selective clusters. We argue that this
factor is unlikely to play a significant role in artificially
generating interindividual variability in localization and
number of face-selective clusters, for several reasons.
First, a large number of face localizers in fMRI rely on this
type of comparison (Berman et al. 2010) (albeit with seg-
mented items and less variable images, limiting general-
ization) and nevertheless describe/report only a few well-
defined face-selective clusters (OFA, FFA, pSTS usually)
(e.g., Rossion et al. 2003; Grill-Spector et al. 2004; Caldara
et al. 2006; Schiltz and Rossion 2006). Second, there is
no evidence that contrasting faces to multiple object
categories together artificially inflates face selectivity as
compared with face localizers in which exemplars of a
single category (e.g., cars or houses; Rossion et al. 2012;
Schwarz et al. 2019; Horovitz et al. 2004; Pourtois et al.
2005; Loffler et al. 2005) or a few selected categories (e.g.,
objects, characters, limbs, places; Weiner et al. 2017) are
compared one-by-one to faces (see Berman et al. 2010).

Specifically, according to their organizational frame-
work of category-selectivity in the lateral and ventral
occipitotemporal cortex, Weiner, Grill-Spector and col-
leagues argue that limbs/body parts generate category-
selective responses laterally on the occipitotemporal sul-
cus and in between face-selective clusters in the pos-
teroanterior axis, guiding the definition of (a fixed set
of) face-selective regions (Weiner and Grill-Spector 2010,
2012). However, there is no direct evidence that including
limbs/body parts as contrast stimuli reduces the num-
ber of face-selective clusters in the lateral and ventral
occipitotemporal cortex, and our complementary study
in 4 individuals shows minimal overlap between face-
selective and limb-selective voxels (Fig. 10). More fun-
damentally, if these OTS-limb regions (or regions of the
inferior temporal gyrus) respond significantly more to
faces than to all other categories than limbs (Weiner
and Grill-Spector 2010), it is difficult to argue that they
do not contribute significantly to face categorization.
Finally, our complementary study shows that removing
the limbs/body parts-selective voxels from our analysis,
does not affect our conclusions regarding the number of
face-selective clusters and their interindividual variabil-
ity (Fig. 10). In summary, while we cannot fully exclude
that adding many other visual categories to compare
one-by-one to faces would lead to a well-structured orga-
nization of category-selectivity in the VOTC with only 3
well-defined face-selective clusters (IOG, pFus-faces, and
mFus-faces) falling in corresponding anatomical regions
in each individual brain, both an objective look at others’
data (e.g., Fig. 4 of Weiner and Grill-Spector 2010) and
ours makes it very unlikely.

As for the analysis steps, we used a model-free
approach, such that variability across individuals and
regions cannot be due to variability in the relation
between neural activity and a modeled hemodynamic

response (e.g., Buxton et al. 2004; Havlicek et al. 2015).
While some participants performed only two and others
three runs, this was taken into account in the analysis to
use the same statistical threshold across individuals (see
Materials and Methods).

Finally, one could argue that interindividual variability
in the number of face-selective clusters as reported here
could be merely due to failures in disclosing genuine
clusters in some individual brains at a given statistical
threshold, or the use of a too liberal statistical threshold,
forcing different clusters to merge together. However, not
only did we take particular care in using a conservative
threshold and describing both the clusters and local
maxima, but our conclusions of interindividual variabil-
ity in number and anatomical localization would remain
the same if the threshold changed uniformly across indi-
viduals (Fig. 6; see also Supplementary Fig. 3). Moreover,
across individuals, the variability in the number of clus-
ters is not related to the statistical threshold used, or to
total face-selective volume activated or maximal SNR. A
different strategy would be to set the number of face-
selective clusters to be identical across individuals (e.g.,
4 in the VOTC) by using variable statistical thresholds
(Rossion et al. 2012). Yet, this would lead to clearly iden-
tifiable clusters in only a subset of individual brains (i.e.,
those with a minimum of 4 clusters, e.g., 10 individuals
for the right VOTC), and these 4 clusters would then
not correspond at all to the same 4 discrete anatomical
regions across individuals (Fig. 4).

Overall, these observations therefore support the view
that—at least at the standard fMRI resolution used
here—interindividual variability in terms of number
of face-selective clusters in the human adult brain,
spanning across different cortical areas, is not due to
noise.

Implications for the Neural Basis of Human Face
Recognition
Given that neuroimaging studies of human face recog-
nition have been performed for three decades, one may
wonder why interindividual variability in the number
of face-selective clusters has not been reported and is
barely even mentioned in previous fMRI studies (except
in Rossion et al. 2012, but without any quantification
and a less specific and sensitive approach). One reason
is that few fMRI studies focus on face localizer data,
and even fewer on an extensive spatial analysis of such
data (Ishai et al. 2005; Weiner and Grill-Spector 2010,
2012; Rossion 2012; Zhen et al. 2015; Schwartz et al.
2019; Wang et al. 2020). Rather, functional fMRI localizers
are used—by definition—to localize functional regions
that are subsequently tested for experimental effects
that are the main focus of the study (Saxe and Powell
2006; Kanwisher 2017). Moreover, these studies often
even focus on a single cluster, usually the largest one
in the middle fusiform gyrus, defined across individual
brains as the FFA with distinct, largely subjective, criteria
across studies.
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A second reason for neglecting interindividual vari-
ability in cluster number is that the vast majority of
fMRI studies of human face recognition apply relatively
severe (Gaussian) spatial smoothing to their data in order
to improve SNR and conform to the assumptions of
the Random Field Theory for statistical testing (Worsley
2005). An obvious consequence of such spatial smooth-
ing is that different face-selective clusters are merged
together, artificially reducing their number (see Weiner
and Grill-Spector 2012; and as also shown in Supplemen-
tary Fig. 5). Even if they end up in vastly different loca-
tions across individuals, these face-selective clusters are
usually subjectively labeled with the same acronym for
group analyses and for deriving general conclusions. A
third reason is that interindividual variability in number
of clusters can easily be dismissed as being due to vari-
ations in local SNR in fMRI. On this basis, small clusters
are ignored, or nearby clusters are lumped together as
being part of the same region, a practice that may be
common in fMRI research. Admittedly, fluctuations of
the fMRI BOLD signal across individual brains and brain
regions can be due to many factors beyond the number,
density and intensity of activity of neuronal populations
involved (e.g., proximity of veins, magnetic susceptibility
artifacts, motion, etc.; Logothetis 2008). Even though a
very conservative procedure of selecting voxels that are
only reliably activated across several functional runs can
be used as here, these factors cannot be fully—or even
well—controlled for, and can always be used to justify
interindividual variability in the number of disclosed
functional clusters.

This leads to the fourth, and most important, rea-
son to dismiss interindividual variability in face-selective
cluster numbers: theory. That is, general neurofunctional
models have been proposed in the early stages of the
neuroimaging investigation of the neural basis of face
recognition, constraining the systematic search for “the
exact same number” of face-selective clusters—typically
defined as regions or areas—in each individual brain (i.e.,
OFA, FFA, and pSTS in Haxby et al. 2000). When other
face-selective clusters are labeled in subsequent studies
that become influential (e.g., FFA1 and FFA2 in Pinsk et al.
2009; pFus-faces and mFus-faces, described by Weiner
and Grill-Spector 2010; a face-selective cluster in ATL
reported by Rajimehr et al. 2009 and a number of other
studies, although with substantially different locations
across studies), these clusters are added in refined neuro-
functional models (Duchaine and Yovel 2015). Such mod-
els are nevertheless always built upon the assumption
that the number of face-selective regions, and their con-
nections, are the same across individual human brains
(and also largely across the primate order; Yovel and
Freiwald 2013; Hung et al. 2015; Weiner and Grill-Spector
2015; Hesse and Tsao 2020; but see Rossion and Taubert
2019). The chief reason behind this assumption is not
only that scientific research is about generality of prin-
ciples rather than idiosyncratic features but that the

standard view in cognitive neuroscience implies such
uniformity.

That is, according to the prevalent view, visual recogni-
tion is thought to be decomposable in discrete represen-
tational stages (which are largely thought to be hierarchi-
cal, but could also be initiated/performed in cascade or
in parallel) with computational transformations applied
to these representations (Marr 1982; Grill-Spector and
Malach 2004; Di Carlo and Cox 2007; Grill-Spector et al.
2017). This view is largely embraced in both cognitive
and neurocognitive models of human face recognition
(Bruce and Young 1986; Haxby et al. 2000; Calder and
Young 2005; Duchaine and Yovel 2015; see also Frei-
wald 2020; Hesse and Tsao 2020 in nonhuman primates).
Therefore, according to the standard view of the neuro-
functional organization of face recognition, all individual
brains of neurotypical adults must necessarily hold the
same number of discrete face-selective clusters/regions
located in the same anatomical areas, while variability
in functional localization would be due to noise or to
anatomical variations in gyri and variability in the exact
position and size of subpopulations of neurons activated
within these areas. According to this framework, “count-
ing the number of clusters that are face-selective is not
a productive method in determining the computations
involved in face perception” (Weiner and Grill-Spector
2010, p. 1570).

If, however, there is interindividual variability in
the number of face-selective clusters across variable
anatomical areas, this standard view is seriously chal-
lenged: how could the same function be performed
across individual brains with a variable number of
computational/representational stages, and how could
these stages be functionally characterized? A full
discussion of this issue is, obviously, beyond the scope
of the present paper. Nevertheless, it deserves at least a
few theoretical and methodological considerations.

At the theoretical level, recognizing faces may be
essentially based on the production of a selective (i.e.,
discriminant) neural response which can be reliably
generalized across variable inputs (i.e., “recognition”
as a categorization function; Rossion and Retter 2020).
Beyond the recognition of a stimulus as a face, all
other face recognition functions (e.g., gender, identity,
expression, etc.) could be defined and expressed as
such. Hence, recognition “only” requires a population
of neurons (either local, e.g., a minicolumn, or spatially
distributed across different brain regions) to change
(through excitation or inhibition, or both) its firing rate
selectively (i.e., fire more or actively reduce firing to faces,
not to other visual shapes) and reliably (with high consis-
tency for variable presentations of faces). Such a function
could be simply achieved by noncategorical sensory
inputs from lower order brain areas (i.e., primary visual
cortex and other topographical visual areas) triggering
the activation of a specialized population of neurons, or a
cortical circuit, in higher level brain areas. As this circuit
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must be shaped by experience, its populations of neurons
have been selected together based on their joined activity
during successful recognition of stimuli as faces in the
past. Hence, sensory inputs coming from early visual
areas trigger a face-selective cortical response not only
because of their intrinsic spatiotemporal characteristics
but because similar patterns of inputs have led to
successful activation of the face-selective circuitry in
previous experiences and adaptive behavior. The cortical
face-selective neural network, being shaped by variable
individual experiences on top of intrinsic anatomical
variability determined by genetic factors, therefore
increases in variability across individuals.

According to this view, populations of neurons in this
circuit cluster (i.e., they form “nodes” in the cortical
face network) because of the ecological relevance and
dominance of faces in the visual environment coupled
with the intrinsic organization of neurons in compet-
ing (mini)columns, in which neurons that fire together
“wire together” (Hebb 1949; Edelman and Mountcastle
1978; Mountcastle 1997; Feldman 2009; Buxhoeveden
2012). All along development, an initially continuous but
coarse (i.e., unspecific) neuronal population response
along the lateral VOTC to faces may therefore progres-
sively “break down in pieces” (i.e., form several clus-
ters) through competition with other categories while,
in return, increase in specificity in response to faces.
Spatially distinct face-selective clusters remain heavily
interconnected (Wang et al. 2020) and, as they concen-
trate a high density of selective populations of neurons,
are functionally meaningful, as shown by the striking
and specific effects of focal electrical stimulation of these
clusters on face perception and face identity recognition
(Jonas et al. 2012; Parvizi et al. 2012; see Jonas and Rossion
2021 for review).

Importantly, this is not to say that different popula-
tions of neurons in face-selective clusters all along the
VOTC have the same response properties, that is, fire
to the same inputs. Indeed, depending on their relative
position within the network, their intrinsic and extrinsic
pattern of connectivity can vary. For instance, anteri-
or/ventral face-selective clusters may receive relatively
more foveal inputs than posterior/lateral clusters from
early visual cortical areas (Finzi et al. 2021). Moreover,
face-selective clusters in posterior brain regions may
have direct reentrant connections with early visual (i.e.,
topographical) areas, while face-selective clusters ante-
rior to the fusiform gyrus may be directly connected with
multimodal regions in the ATL and the hippocampus
(Jonas and Rossion 2021). Interindividual variability in
the number and spatial extent of face-selective clusters
is not an issue as long as their functional sensitivi-
ties (e.g., peripheral/foveal or visuo/semantic) vary grad-
ually, in particular along the posteroanterior axis of the
VOTC, rather in terms of fixed hierarchical information-
processing representational “stages.” Focal damage to
these clusters, or electrical intracerebral stimulation, can
therefore have different behavioral consequences (Jonas

and Rossion 2021), which are nevertheless difficult to
account for in terms of a modular organization.

In sum, the human face recognition function is not
strictly localized to one anatomical region such as the
“FFA” in the lateral middle fusiform gyrus, and not
even supported by an anatomically fixed set of discrete
regions across individual brains. Yet, it is “not fully
distributed” either in the whole VOTC (e.g., Haxby et al.
2001; O’Toole et al. 2005),2 but obeys general anatomical
constraints to define idiosyncratic cortical networks with
a substantial amount of variability in the configuration
(i.e., localization, size spatial extent, and number) of their
nodes.

This briefly sketched alternative view of the neuro-
functional organization of face recognition also carries
a number of methodological implications for future
studies and understanding of the neural basis of human
face recognition with fMRI and neuroimaging approaches
in general. One implication is that while using face-
selective clusters to ask questions about category-
specific mechanisms of, say, attention or consciousness,
appears to be valid and informative, attempts to relate
face-selective clusters one by-one across individual
brains to define “the” function (representation/com-
putation) of each cluster (e.g., “the” FFA) are unlikely
to succeed. Even more so, searching for one-to-one
homologies or comparisons of face-selective clusters
between humans and other primates (Tsao et al. 2008;
Yovel and Freiwald 2013; Weiner and Grill-Spector 2015)
appears profoundly misleading. While some fMRI studies
appear to constantly report six face-selective clusters
in posterior regions of the macaque brain for instance
(Tsao et al. 2008), with four to five of these clusters
located in the STS, this exact number is rarely reported
in most studies, with variations between 2 and 6 clusters
or more (Pinsk et al. 2005, 2009; Hadj-Bouziane et al.
2008; Moeller et al. 2008; Tsao et al. 2008; Taubert
et al. 2015, 2020), suggesting also a large amount of
interindividual variability in this nonhuman primate
species. In humans, using probabilistic atlases based on
independent datasets to define face-selective regions in
an individual brain based on cortical anatomy only (e.g.,
Rosenke et al. 2021) is also questionable at two levels:
first because this approach will lead to a poor evaluation
of face selectivity in the studied brain (Fig. 7), and second
because, by lumping together all clusters selective to one
domain in a given cytoarchitectonic area, it reinforces a
misleading vision of the brain as being constituted of the
same number of functional modules, further ignoring
interindividual functional variability.

Evaluating what type of stimulus properties or task-
factors modulates neural activity in the face-selective

2 This view of a widely distributed face representation is based on the
observation that there is sufficient “information” [i.e., patterns of variations
of signal across voxels] for faces to be reliably recognized/categorized even
when removing the contribution of face-selective regions [Haxby et al. 2001].
However, there is no evidence that this category recognition outside of face-
selective regions is reliable beyond simple image-based matching of few con-
trasted exemplars, and useful for the function at stake.
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network is legitimate, but this analysis should be prefer-
ably considered at the level of the whole cortical face
network, testing for gradients of functional responses to
physical or abstract properties in different axes, rather
than focusing on necessarily subjectively defined func-
tional regions. Searching for specific patterns of anatomi-
cofunctional connectivity that can be generalized across
individual brains, for example, FFA connected to OFA,
and so on (e.g., Wang et al. 2020; Kessler et al. 2021),
also appears problematic insofar as the definition of
specific isolated clusters is not clear. However, studies
of anatomicofunctional connectivity of the cortical face
network can be highly relevant at level of individual
brains.

The same issue also applies to transcranial magnetic
stimulation (TMS) studies, where average coordinates
are sometimes used to define target stimulation sites
for face recognition (e.g., Pitcher et al. 2007). In fact,
the data illustrated here show that in many individu-
als, face-selective clusters expand considerably, contin-
uously, across anatomical borders (Figs 7 and 9). This
apparent continuity may—or may not be—broken with
higher-resolution data obtained at high field fMRI, which
should be the topic of future research. Regardless, this
field of study would be well inspired by abandoning func-
tional labels such as “FFA” or “OFA” because they only
correspond to a seriously distorted, and therefore mis-
leading reality (Rossion et al. 2012). Rather, face-selective
clusters may be better referred to “at the individual level”
in terms of their predominant anatomical location (“Fus-
faces 1,” “Fus-faces 2”), fully acknowledging that they can
extend over different anatomical structures and do not
necessarily correspond across individual brains.

Supplementary Material
Supplementary material can be found at Cerebral Cortex
online.
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