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Abstract

The ability to detect faces in the environment is of utmost ecological importance for human social adaptation.
While face categorization is efficient, fast and robust to sensory degradation, it is massively impaired when the
facial stimulus does not match the natural contrast statistics of this visual category, i.e., the typically experi-
enced ordered alternation of relatively darker and lighter regions of the face. To clarify this phenomenon, we
characterized the contribution of natural contrast statistics to face categorization. Specifically, 31 human
adults viewed various natural images of nonface categories at a rate of 12Hz, with highly variable images of
faces occurring every eight stimuli (1.5Hz). As in previous studies, neural responses at 1.5Hz as measured
with high-density electroencephalography (EEG) provided an objective neural index of face categorization.
Here, when face images were shown in their naturally experienced contrast statistics, the 1.5-Hz face categori-
zation response emerged over occipito-temporal electrodes at very low contrast [5.1%, or 0.009 root-mean-
square (RMS) contrast], quickly reaching optimal amplitude at 22.6% of contrast (i.e., RMS contrast of 0.041).
Despite contrast negation preserving an image’s spectral and geometrical properties, negative contrast images
required twice as much contrast to trigger a face categorization response, and three times as much to reach
optimum. These observations characterize how the internally stored natural contrast statistics of the face cate-
gory facilitate visual processing for the sake of fast and efficient face categorization.
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Significance Statement

Human faces share a universal property: the strict alternation of contrast, with the darker main features
against the more uniform, lighter skin. The ability to categorize faces depends critically on the presence of
these natural contrast statistics in the input stimulus. However, it is not yet known how natural contrast sta-
tistics facilitate the visual processing leading to categorization. Using frequency tagging and high-density
electroencephalography, we show that access to internally stored natural statistics reduces the amount of
sensory input necessary for human face categorization.

Introduction
Among the many things that humans encounter in their

visual environment, there is one category of utmost eco-
logical relevance, and for which the human brain has

developed an exceptionally high sensitivity: the faces of
conspecifics. The newborn human preferentially orients
their gaze toward faces and face-like patterns (Goren
et al., 1975; Turati et al., 2002; Buiatti et al., 2019) and
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infants of a few months of age already show specialized
(right-lateralized) neural responses to faces presented at
a glance (de Heering and Rossion, 2015; Rekow et al.,
2021; see also Tzourio-Mazoyer et al., 2002). At adult-
hood, humans automatically detect the presence of a
face in the environment, and differentiate it from the other
objects composing the scene (i.e., categorize it as a face)
at presentation duration as short as 17ms (Keysers et al.,
2001; Retter et al., 2020; see also Grill-Spector and
Kanwisher, 2005; Fisch et al., 2009; Perrett et al., 2009;
Mohsenzadeh et al., 2018). It only takes a few tens of milli-
seconds to initiate a saccade toward a face even if it is
embedded in a complex background (Thorpe et al., 1996;
Lewis and Edmonds, 2003; Rousselet et al., 2003;
Hershler and Hochstein, 2005; Fletcher-Watson et al.,
2008; Honey et al., 2008; Crouzet et al., 2010; Crouzet
and Thorpe, 2011; Martin et al., 2018; Kauffmann et al.,
2019; for review, see Fabre-Thorpe, 2011). The mecha-
nisms underlying the automaticity and exceptional speed
at which human adults categorize faces work efficiently
even when access to sensory input is hampered because
of brief exposure, masking, blur, noise, or clutter (Goffaux
et al., 2011; Ales et al., 2012; Quek et al., 2018b). Yet,
face categorization is dramatically impaired when the
stimulus does not share the visual properties that have
been experienced by the observer as being characteristic
of the face category (Rosch and Mervis, 1975; Rosch et
al., 1976), i.e., the regularities in how faces appear in
everyday life (so-called natural statistics; Geisler, 2008;
Clifford et al., 2015). One salient and universal regularity
of the human face is the ordered alternation of contrast,
with darker regions occupied by the main features (brows,
eyes, nose and mouth) against the more uniform and rela-
tively lighter skin surface (Fig. 1; Watt, 1994; Dakin and
Watt, 2009; Gilad et al., 2009). This relative distribution of
contrast is because of the structural and reflectance prop-
erties of the face and the fact that lighting usually comes
from above (Ramachandran, 1988; Liu et al., 1999). Such
characteristic natural light/dark alternation is reversed
with image negation. Although negation is a fully reversi-
ble manipulation of the image, which leaves the image
geometric and spectral properties unchanged, it has pro-
found consequences for the categorization of faces.
For example, contrast negation disrupts human infants’

viewing preference for faces (Farroni et al., 2005; Otsuka
et al., 2012). Later in adulthood, contrast negation slows
down and impairs behavioral performance in face detec-
tion (Lewis and Edmonds, 2003; Liu-Shuang et al., 2015a)

as well as face identity recognition tasks (Galper, 1970;
Galper and Hochberg, 1971; Bruce and Langton, 1994;
Kemp et al., 1996; Liu et al., 1999; Lewis and Edmonds,
2003; Russell et al., 2006; Nederhouser et al., 2007;
Garrido et al., 2008; Liu-Shuang et al., 2015a). This ma-
nipulation also reduces the human brain response to
faces (George et al., 1999; White, 2001; Vuong et al.,
2005; Nederhouser et al., 2007; Gilad et al., 2009; Nasr
and Tootell, 2012; Rossion et al., 2012; Yue et al., 2013;
Liu-Shuang et al., 2015a; see also Ohayon et al., 2012 for
evidence in the primate brain). Altogether, these findings
suggest that human efficiency at categorizing faces crit-
ically depends on whether their appearance obeys the
naturally experienced statistics of the face category, i.e.,
whether it depicts the contrast pattern typically rendered
by a top-lit face. Comparatively, contrast negation has a
moderate impact on the categorization of nonface stimuli
(Galper, 1970; Nederhouser et al., 2007; Yue et al., 2013),
which has been taken to suggest that the unique suscep-
tibility of human face categorization to contrast negation
is mainly because of (1) face appearance obeying unique
universal ordinal contrast rules (Fig. 1), and (2) their exten-
sive learning by humans over lifespan.
In studies addressing the influence of contrast polarity

statistics on face categorization, the stimuli are typically a
few homogeneous exemplars isolated from their natural
context and selected from a restricted set of categories
(Yue et al., 2013; Liu-Shuang et al., 2015a). However, in
real life, categorization success depends on the dual abil-
ity to differentiate faces from their background (i.e., seg-
mentation) and from diverse distracters that are present in
the scene as well as to generalize across widely variable,
and sometimes very dissimilar, category exemplars (for
review, see Rossion et al., 2018). Such naturalistic, i.e.,
variable and crowded, viewing conditions, place maxi-
mum demands on the sensitivity and tolerance of face
categorization, and it is in such viewing conditions that
the knowledge of natural statistics is expected to con-
tribute the most to perception (Clifford et al., 2015;
Karimi-Rouzbahani et al., 2021). In order to adequately
define the influence of natural statistics on the genuine
categorization of faces, it is therefore crucial to simulate
the richness of real-world visual diet and, therefore, to
use naturalistic, heterogeneous, and unsegmented face
stimuli contrasted to a wide array of biological and
man-made objects.
As noted above, while a well-known signature of human

face recognition is its right hemispheric dominance, the
causes/factors of this right-hemispheric lateralization re-
main a mystery (Behrmann and Plaut, 2020; Rossion and
Lochy, 2022). When sensory input is reduced, e.g., by
poor visual acuity during early development or with stimulus
degradation, the right-hemispheric dominance is preserved,
even enhanced (de Schonen and Mathivet, 1990; Quek et
al., 2018b). Since contrast negation breaks the natural con-
trast statistics of the human face that are at the heart of the
neural specialization of face recognition, their preservation
may be necessary to observe a right-hemispheric domi-
nance. If this reasoning is correct, the right-hemispheric
dominance of human face categorization should disappear,
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or at least be significantly reduced, with contrast negation
(cf. Liu-Shuang et al., 2015a).
Another fundamental issue is exactly how natural statis-

tics support the successful categorization of faces. Past
evidence has shown that contrast negation weakens neu-
ral and behavioral responses to faces but exactly how it
impedes visual processing leading up to (genuine) face
categorization is unclear.

In order to clarify these outstanding issues, the present
study elicited genuine visual categorization processes
by using a large and variable set of face and nonface
(manmade objects, buildings, plants, animals) exemplars
embedded in their original context. The depicted faces
varied substantially in age, gender, expression, pose, size
and viewpoint (Fig. 2A,B). This wide variety of images pla-
ces the visual system in a mode of operation closer to that

Figure 1. The human face obeys systematic and universal contrast statistics with the regions occupied by the main features
being darker than the neighboring skin surface. To illustrate this point, we measured the luminance in the left eye and left
cheek regions in a large set of “in-the-wild” face images stemming from seven distinct ethnic origins (n = 100 images per eth-
nicity, half-female; age range: 30–39 years old; Karkkainen and Joo, 2021). We used this image set for the luminance meas-
urements exclusively (i.e., a different, validated, set of faces was used as experimental stimuli). We only used face images
where these regions were free of hair, occlusion (by e.g., glasses, or a limb), and excessive make-up. Faces were of highly
variable pose, expression, illumination, etc. The broad distribution of luminance values illustrates the large heterogeneity of
skin tones measured. Top, Illustrative averages of the face images that were used for the analysis in each ethnic origin.
Bottom, Scatterplot of the mean luminance of the eye and the cheek region for each measured faces (n = 700 in total; for a
similar analysis on a restricted set of 50 faces, see Gilad et al., 2009). White rectangles superimposed on the inset faces illus-
trate the eye and cheek regions as sampled in the present analysis. Except for a minority of outlier face images, one can see
that all data points lie above the diagonal, which means that luminance in the eye region is systematically darker than around
the cheek. This rule applies regardless of face surface properties (absorbance, illumination, and specular reflection).
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activated in the natural conditions of face categorization,
and necessarily engages its sensitivity and tolerance. We
present these images at a fast periodic rate of 12Hz [stim-
ulus onset asynchrony (SOA) of 83.33ms], which is opti-
mal for categorization in these conditions (Retter et al.,
2020), and record human brain responses using high-
density scalp electroencephalography (EEG). Since the
human brain synchronizes its activity to the periodicity of
the visual stimulus (Adrian and Matthews, 1934; Regan,
1966; for review, see Norcia et al., 2015), such a stimulus
sequence elicits a common neural response to face and
nonface stimuli at image frequency rate (12Hz) and har-
monics. Face stimuli appeared every 8th image (i.e., peri-
odicity of 1.5Hz; Fig. 3A; Extended data Figure 3-1). If the
periodically presented faces are successfully categorized,
an additional category-selective neural response emerges
at 1.5Hz, i.e., at the same frequency as face occurrence.
This neural response at 1.5Hz is an implicit marker of

genuine categorization, i.e., one that meets the dual re-
quirements of face categorization: sensitivity to the face
relative to the other categories present in each scene and
sequence, as well as tolerance to the high variability of
face appearance in the sequence (Rossion et al., 2015,
2018; Retter and Rossion, 2016; Peykarjou et al., 2017;

Quek and Rossion, 2017; Gao et al., 2018, 2019; Retter et
al., 2018; Or et al., 2019; Hauk et al., 2021). Its amplitude
has recently been shown to scale systematically with the
proportion of face images that are correctly categorized in
a sequence (Retter et al., 2020). This implicit frequency-
tagged marker of face categorization usually emerges
over occipito-temporal scalp electrodes, mainly right-lat-
eralized, and presumably reflect face-selective responses
in the ventral occipito-temporal cortex (see Jonas et al.
(2016) for evidence from human intracerebral recordings,
Gao et al. (2018) for functional magnetic resonance imag-
ing evidence, and Hauk et al. (2021) with magnetoence-
phalography). A categorization response also emerges
when nonface categories are frequency-tagged in fast
stimulation sequences (e.g., houses and body parts Jonas
et al., 2016; Hagen et al., 2020). However, it is of much
weaker amplitude for nonface than for face categorization
and associated with distinct patterns of lateralization and
scalp topography. This paradigm has multiple advantages
over other approaches. Not only does it lead to a more au-
thentic categorization, but it also measures the brain’s re-
sponse to categorization implicitly and objectively, at time
frequencies predetermined (“labeled”) by the periodicity of
the sequence (Retter and Rossion, 2016).

Figure 2. Experimental stimuli. A, Face images (N=100). B, Nonface images (N=200). C, Stimulus contrast was modulated via a
blending (i.e., luminance values were calculated as a weighted average of the stimulus with the gray background). Example object
and face image at the different contrast levels, in natural and negative contrast groups. Note that luminance and contrast were here
adjusted for figure visibility and are not representative of the actual (g-corrected) values.
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Figure 3. A, EEG frequency-tagging paradigm. Images were presented in random order at a rate of 12Hz (12 images/s, SOA of
83.33ms), with faces embedded among objects at fixed intervals of 1/8 (face presentation frequency=12/8 = 1.5Hz). B, The image
contrast of the frequency-tagged sequences was parametrically varied over 14�6 s steps (84 s total), either gradually increasing
(Low-to-High, left) or decreasing (High-to-Low, right). Sweeping in the two directions enabled to account for potential order effects
on responses. C, Schematic timeline of a sweep trial. Following the appearance of a central fixation cross (lasting between 2 and 5
s), the sequence began with a pre-lude period (repetition of the first sweep step) before the sequence proper. At the end of the se-
quence, the last sweep step was repeated during the post-lude period, and the fixation remained on screen for another 2–5 s. D,
Observers performed an orthogonal behavioral vigilance task during which they maintained central fixation while monitoring two
flanking vertical bars. These bars independently changed color from red to blue and observers had to respond only when both bars
turned red simultaneously. Extended Data Fig. 3-1 illustrates the group-averaged accuracy and reaction times in each group and
condition. Note that luminance and contrast were here adjusted for figure visibility and are not representative of the actual (gamma-
corrected) values.
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Here we used this well-validated approach to charac-
terize how natural face contrast statistics affects the face
categorization process. We compared the neural face cat-
egorization response as a function of sensory input, for
image sequences displayed in a natural contrast polarity,
to sequences with reversed contrast polarity (negative con-
trast). In each sequence, stimulus contrast ramped (i.e.,
was “swept”) up or down (Fig. 3B). Contrast being the fun-
damental signal driving the visual system (Kaplan et al.,
1987; Boynton et al., 1996), its sweeping enables manipu-
lating the amount of sensory input available to categorize
faces. With this approach, we defined for each individual
participant the minimal amount of sensory input (i.e., con-
trast) required to elicit a genuine categorization response
as well as the optimal level of sensory input, namely the
level of contrast needed to see a full-blown categorization
response, i.e., reaching the amplitude as elicited by full
contrast images.
We reasoned that the facilitation of categorization by

natural statistics may take multiple forms. Humans may
simply need less sensory input to start categorizing a face
as a face. In this case, contrast negation should only in-
crease the contrast minimum and leave the optimum level
of contrast unchanged. It is however plausible that once
the minimal amount of information has been reached and
leads to a significant categorization response, the visual
systemmay need less input to accrue the face categoriza-
tion response until its optimum (Liu-Shuang et al., 2015a;
Quek et al., 2018b; Retter et al., 2020). By deriving the dis-
tance separating minimum/optimum, we can define the
dynamics of visual processing subtending face categori-
zation. An increase in the contrast minimum for contrast-
negated sequences will reduce such distance while an
increase of optimum will enlarge the minimum/optimum
distance. This approach allows us to characterize how the
dynamics of visual processing subtending face categori-
zation are modulated by natural face contrast statistics.

Materials and Methods
Participants
Thirty-one healthy adult participants were recruited on-

line through the university’s participation pool in ex-
change for monetary compensation (10 e/h). Sixteen
participants viewed stimulus sequences in their natural
contrast polarity (“natural contrast” group). We excluded
one individual whose EEG recording contained excessive
artifact noise (deflections exceeding 6100mV on multiple
epochs). The final “natural contrast” sample consisted of
15 participants (nine females, age = 236 3 years). Another,
so-called “negative contrast” group of 15 participants (six
females, age = 236 1.7 years) was tested with the con-
trast-negated stimulus sequences. We opted for a be-
tween-subject manipulation of contrast polarity to avoid
any potential learning/order effects. All observers were
right-handed as confirmed by an electronic version of the
Edinburgh Handedness Inventory measurement (Oldfield,
1971) and reported normal or corrected-to-normal vision.
Participants gave written informed consent prior testing
conformingly to the guidelines of the local Biomedical
Ethical committee (B403201111965).

Stimuli
Stimuli were 256� 256 pixel greyscale images of 100

white faces and a variety of 200 nonface items (e.g., ani-
mals, plants, man-made objects, buildings, etc.). All faces
and objects were embedded in their natural backgrounds
(i.e., unsegmented), and varied greatly in orientation, light-
ing, size, and overall appearance (Fig. 2A,B). The same
stimulus set was used in previous studies (Quek and
Rossion, 2017; Quek et al., 2018b). For the present study
specifically, we equalized mean luminance and contrast
of all the stimuli by first normalizing the pixel luminance to
a mean of zero and a SD [i.e., root-mean-square (RMS)
contrast] of one. Face and object images were contrast-
negated by flipping the pixel intensities around the mean
luminance value (Fig. 2C). Contrast negation was used
here to disrupt the natural statistics of the images thought
to crucially support their visual processing while conserv-
ing their amplitude spectrum and contours (see below).
All images were attributed a global luminance of 0.46 and
an RMS contrast of 0.18. These values reflect the grand-
averaged luminance and contrast values of the original
images, adjusted to avoid luminance clipping. The result-
ing face and object images showed similar average pixel
luminance distributions.
Finally, images were g-corrected according to the lumi-

nance profile of the BenQ XL2420T monitor (refresh rate of
120Hz, screen resolution of 1920� 1080 pixels). The mean
luminance after g correction was 58.79cd/m2. Stimulation
was conducted on Java SE version 8 in Windows 7. Stimuli
were displayed at a viewing distance of 100cm and sub-
tended a visual angle of 4.04° by 4.04° in a dimly lit room.
During stimulation, image contrast was parametrically ma-
nipulated on a logarithmic scale via online a blending,
which created a weighted sum of the luminance values of
the image and a gray background while maintaining mean
luminance. Fourteen contrast levels were presented, from
0.8% to 100% of the initial RMS contrast, with percentages
referring to the weight of images relative to background.
The respective RMS contrast values of the presented stim-
uli are listed on Figure 2. Logarithmic scaling was chosen
to maximize sampling of the low contrast range where the
human visual system is expected to be most sensitive.

Procedure
Before each EEG experiment, we measured the visual

abilities of each participant using the Freiburg Visual
Acuity and Contrast Test (FrACT; Landolt C optotype
stimulus with 4AFC) at a viewing distance of 100 cm.
Mean minimums in terms of Weber contrast were 1.02%
for the “natural contrast” group (range= 0.6–1.67%) and
1.05% in the “negative contrast” group (range= 0.59–
2.18%), and did not differ significantly between groups
(independent samples t test: t(28) =�0.21, p=0.84).
In an experimental sequence, images were shown at a fast

rate of 12Hz (12 images/s, SOA=83.33ms) through a squar-
ewave luminancemodulationwith an 80%duty cycle (i.e., im-
ages were ON for 66.67ms and OFF for 16.666ms; Fig. 3).
Faces (F) were inserted among objects (O) at regular fixed in-
tervals of 1/8 (or 12/8=1.5Hz), resulting in the following stim-
ulation pattern: OOOOOOOFOOOOOOOFOO... (Fig. 3A, as
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in Quek et al., 2018b). We opted for a 12-Hz periodicity be-
cause of consistent evidence that this rate elicits the
largest EEG categorization responses as well near-ceil-
ing behavioral performance (Retter et al., 2020). In order
to minimize potential low-level edge and image adapta-
tion effects, at each 12-Hz presentation cycle, stimulus
size randomly varied between 90% and 110% (in 5%
steps; i.e., five possible sizes). In agreement with previ-
ous studies (Quek et al., 2018b), we expected this peri-
odic stimulation to elicit two critical neural responses: (1)
a general visual response at the 12-Hz image presenta-
tion frequency (and harmonics), reflecting general visual
processing common to faces and objects; and (2) a face
categorization response at the 1.5-Hz face presentation
frequency (and harmonics). Considering that our study
addresses the impact of natural statistics on categorization
efficiency, the subsequent analyses will mainly focus on
the face categorization response.
The main experiment employed so-called contrast

sweep sequences (Fig. 3B), in which we varied image
contrast over 14 sequential steps (6 s per step), either in
ascending (low to high) or descending order (high to low).
Contrast was swept in both directions to compensate for
potential order effects. Hence, image sequences either
gradually appeared or gradually disappeared against the
gray background over the course of each 84-s sweep se-
quence. At the face presentation rate of 1.5Hz, each step
contained 9 faces. A sequence was flanked by six extra
seconds consisting, respectively, of repetitions of the first
contrast step (e.g., 0.8% in the Low-to-High condition)
and the last contrast step (e.g., 100% in the Low-to-High
condition). As in previous studies (Quek et al., 2018b),
these “pre-lude” and “post-lude” periods, aiming to mini-
mize muscle artefacts and ocular movement elicited by
the appearance and disappearance of flickering images,
were not further analyzed. We presented a total of 24 se-
quences (half in Low-to-High order and the other half in
High-to-Low order), divided into four blocks of 6 sequen-
ces shown in pseudorandomized order. With nine face
images presented per sequence step, we reached a total
of 3024 face image presentations in the main experiment
(and a total of 21,168 nonface images).
Tracking the amplitude of the 12-Hz general visual re-

sponse and of the 1.5-Hz face categorization response
across contrast steps enabled us to define the minimum
and optimum levels of contrast for each neural response
(see below).
The main experiment was followed by one block of four

96-s (61841 6 s as for contrast sweep sequences) long
full-contrast sequences of natural contrast images, in
which image contrast remained at 100% without modula-
tion, except for the pre-lude and post-lude. These latter
sequences provided reference amplitudes for EEG re-
sponses recorded in the contrast sweep sequences. In
the “negative contrast” group of participants, we addi-
tionally presented four full-contrast sequences with nega-
tive contrast. Importantly, the response profile of each
subject was evaluated against its own full positive con-
trast reference response, i.e., minima and optima were
defined within subject.

Behavioral task and performance
A blue central fixation cross (0.05 � 0.2° visual angle)

was overlaid on top of the stimulation sequence, appear-
ing 2–5 s before the onset of the sequence and remain-
ing 2–5 s after its offset. Two vertical lateral bars (visual
angle 0.08� 4.3°) flanked the stimulus continuously at
an eccentricity of 2.02°. In the beginning the trial, the
both vertical bars were blue. At 12 (pseudo)random la-
tencies within the 84-s sweep sequence, either one of
the vertical bars or both of the vertical bars turned red for
a duration of 300ms. At all other times during the se-
quence, both bars were shown as blue. Each change
lasted for 300ms, and there was a minimum interval of
800ms between consecutive changes. The interval be-
tween the offset of the red bar(s) and the onset of the
next red bar(s), that is, the time during which both bars
were blue, was always at least 800ms. Participants were
instructed to maintain central fixation and to respond
whenever both bars simultaneously changed color by
pressing on the spacebar of a keyboard. On average,
there were ;6 targets per sequence (mean 6 SD: natu-
ral contrast group = 5.9261.74; negative contrast
group = 5.986 1.69). Responses were considered cor-
rect when falling within a time-window between 250
and 800ms following color change onset.
Previous studies have shown that the neural response

to frequency-tagged face categorization is robust whether
participants perform this task, another vigilance task or
no task at all (Quek et al., 2018a,b). In the present study, a
vigilance task was required to ensure that participants’ at-
tention to the stimulus was comparable across contrast
levels and groups. Overall, behavioral performance in
the full contrast and contrast sweep conditions was
highly accurate across groups (Extended Data Fig. 3-1).
Independent samples t tests did not reveal any Group
differences in accuracy, neither in the Full contrast (t(28) =
�0.052, p= 0.96, 95% confidence interval of the group
difference: [–0.078 0.074]), nor in the contrast sweep se-
quences (t(28) = 0.4, p= 0.69, 95% confidence interval of
the group difference: [–0.036 0.054]). Mean correct re-
sponse times were also similar across Groups (Full con-
trast sequence: t(28) = �0.86, p= 0.4, 95% confidence
interval of the group difference: [–0.069 0.028]; Contrast
sweep sequence: t(28) = –0.54, p= 0.6, 95% confidence
interval of the group difference: [–0.054 0.031]). Overall,
these findings suggest that both groups were adequately
and equally attentive to the stimulation sequences.

EEG acquisition
Scalp EEG was recorded with 128 Ag-AgCl active-elec-

trodes from the Biosemi ActiveTwo system (BioSemi B.V.)
in a quiet and dimly-lit room. Default electrode labels
(e.g., A1, B1, etc.) were renamed to approximate the 10/5
system (Oostenveld and Praamstra, 2001; Rossion et al.,
2015). The vertical and horizontal electrooculogram (EOG)
was monitored with four additional flat-type electrodes
placed at the outer canthi of the eyes, and above and
below the right eye. EEG data were sampled at 512Hz,
and the magnitude of electrode offset was held below
625mV.
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Data analysis
Natural and negative contrast experiments followed the

same analysis procedure outlined below.

Preprocessing
EEG data analysis was performed using Letswave 5

(https://www.letswave.org/) running on MATLAB R2012b
(MathWorks). We first de-trended and removed the DC
component from the continuous EEG signal before apply-
ing a 0.1- to 120-Hz bandpass filter (4th order zero-phase
Butterworth filter). Data were downsampled to 256Hz for
easier handling and segmented into sequences according
to condition (High-to-Low contrast sweep, Low-to-High
contrast sweep, and full-contrast), with two extra seconds
before and after each sequence (21 961 2 s= 100 s). For
each participant, we corrected artifacts related to eye
blinks by applying independent component analysis (ICA)
with a square mixing matrix on each participant and re-
moving the single component corresponding to the blinks,
identified based on the component waveform and scalp to-
pography. Further artifact-ridden channels (i.e., sudden
amplitude shifts exceeding 6100mV over several epochs)
were replaced by the average of the three neighboring
channels using linear interpolation. Next, the cleaned data
were re-referenced to the average of the 128 scalp chan-
nels and averaged within conditions for each participant.

Frequency-domain analysis
In the sweep conditions, each preprocessed sequence

was further cropped according to the 14 contrast steps
into 6-s epochs, discarding the first and last 6 s corre-
sponding to the pre-lude and post-lude. A fast Fourier
transform (FFT) was applied to extract the frequency am-
plitude spectra for each step [i.e., normalized amplitude
spectrum (mV), with a frequency range of 0–128Hz and
frequency resolution of 0.167Hz]. For full-contrast se-
quences, we also cropped the four preprocessed sequen-
ces into 14 smaller epochs (total of 56 epochs) to obtain
amplitude spectra with comparable frequency resolution
as the sweep sequences. As there is no contrast modula-
tion during these 14 epochs for full-contrast sequence,
they were averaged together following the FFT.
To correct for variation in baseline noise level, the raw

amplitudes were normalized relative to the background
EEG activity by subtracting from the amplitude at the fre-
quencies of interest (i.e., 1.5Hz and its harmonics for face
categorization responses, and the stimulus presentation
rate of 12Hz and its harmonics; Fig. 4) the mean ampli-
tude of eight neighboring frequency bins (four on either side,
skipping the immediately adjacent bin) in each condition
and for each subject. To quantify general visual responses
and face categorization responses, we aggregated across
their respective frequency harmonics (similarly to Quek et
al., 2018b). The range of harmonics was defined a priori
based on previous experiments using the current face cate-
gorization frequency-tagging paradigm (Retter and Rossion,
2016; Quek et al., 2018b; Retter et al., 2020). Thus, we
summed the baseline-corrected amplitudes of seven con-
secutive harmonics (i.e., 1.5, 3, 4.5, 6, 7.5, 9, and 10.5Hz)
for the face categorization response, and four consecutive
harmonics of 12Hz up to 48Hz for the general visual

responses of each of the 128 channels. Going forward, the
general visual responses and face categorization responses
will refer to these aggregated responses. We averaged the
responses in the Low-to-High and High-to-Low contrast
conditions according to the image contrast value. In other
words, responses at step 1 in the Low-to-High condition
were averaged with responses at step 14 in the High-to-
Low condition, step 2 in Low-to-High with step 13 in High-
to-Low, and so forth.

Regions of interest
As in previous face categorization frequency-tagging

studies (Rossion et al., 2015), the scalp topography of
both the general visual and face categorization responses
was comparable across observers; still there were moder-
ate individual differences likely because of, e.g., dipole
generator orientation, cortical folding, skull thickness, and
tissue conductivity (Luck, 2005; Nunez and Srinivasan,
2006; Woodman, 2010; Hauk et al., 2021). We therefore
defined unique ROIs for each individual based on their
EEG responses in the full-contrast condition. Thus, for
each participant and for each type of response (general
and categorization), we selected the four EEG channels
showing the strongest response amplitude in the full-con-
trast sequences, and averaged amplitudes across these.
ROIs selected this way replicated the previously reported
dissociation between the general visual response (12Hz)
and the face categorization response (1.5Hz; Rossion et
al., 2015; Retter and Rossion, 2016; Quek et al., 2018b
see Extended data Figures 5-1 and 5-2 for the list the four
channel ROIs selected for each individual in the Natural
and Negative Contrast group, respectively. Asterisks indi-
cate participants with duplicate channels across the gen-
eral visual response and face categorisation ROIs.).
Overall, ROIs for the general visual response were located
over medial occipital channels (the four channels most

Figure 4. Frequency domain characterization of the neural re-
sponse. Grand averaged SNR spectrum of the neural response
to the contrast sweep at maximum visibility (i.e., step 14) at oc-
cipito-temporal channel (PO10). Note the robust response at
the image presentation frequency (12Hz and harmonics up to
48Hz; not visible here). Responses to faces were tagged at
1.5Hz and harmonics (1.5, 3, 4.5, 6, 7.5, 9, and 10.5Hz).
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commonly selected for observers were Oiz-O2-POI2-Iz
for natural full-contrast and Oiz-Oz-POI1-O1 for negative full-
contrast) whereas ROIs for the face categorization response
clustered over bilateral occipito-temporal channels (most
commonly selected were channels P10-PO10-PO12-PO9 for
natural full-contrast and PO12-P10-PO10-PO11 for negative
full-contrast). There was little overlap between the ROI of the
general visual response and the categorization response
(5.83% overlap between channels in natural contrast group
and 3.33%overlap in negative contrast group).
We investigated the hemispheric lateralization of the

face categorization response. To ascertain that the po-
tential hemispheric differences result from functional
lateralization, and not from differences in channel selection
across hemispheres and individuals, we determined sym-
metrical right and left ROIs based on the group-averaged
face categorization responses in the full-contrast condi-
tion, i.e., the same channels were averaged for all partici-
pants for this analysis. The right occipito-temporal (ROT)
ROI was composed of channels PO8, PO10, PO12, and
P10, while the left occipito-temporal (LOT) ROI was com-
posed of channels PO7, PO9, PO11, and P9.

Definition of minimal and optimal contrast
In each ROI and for each response, we defined the mini-

mum and optimum levels of contrast for each neural re-
sponse separately. The minimum contrast was the lowest
contrast step to elicit a general visual or categorization re-
sponse amplitude significantly larger than 0 mV. The opti-
mal contrast was defined as the contrast step from which
general visual or categorization responses were not signifi-
cantly different to responses to full-contrast stimuli. Note
that full-contrast and individual contrast step amplitude val-
ues are based on different numbers of trials (n = 56 and n =
24, respectively), likely resulting in a difference of SNR. Yet,
since this was the case in both the natural and negated
samples, any potential SNR difference is expected to be
similar across them, and unlikely to contaminate our finding
of a relative group difference in the face categorization re-
sponse dynamics. In Extended Data Figure 5-3, we confirm
that the amplitude of the face categorization response in full
contrast sequences is robust to subsampling.
The contrast minimum and optimum were determined at

the group-level using a bootstrapping procedure. First, for
each type of response and in each experiment, we sampled
15 subjects with replacement from the original dataset.
Next, we computed the 95% confidence interval of the
mean of the bootstrapped sample at each contrast step of
the sweep sequence. The contrast minimum was defined as
the lowest contrast value where the response’s 95% confi-
dence interval exceeded zero. Similarly, we defined the opti-
mum as the lowest contrast at which the 95% confidence
interval included the mean amplitude of the full-contrast re-
sponse in this bootstrapped sample. We repeated this entire
process 10,000 times. Finally, we extracted the peak of the
distributions of bootstrapped minimum and optimum values
of the general visual or face categorization responses.

Response amplitude comparisons
In addition to determining the minimum and optimum

contrast, we examined whether the magnitude of the

general and categorization responses differs across con-
ditions. We expected the influence of contrast negation
on the neural response amplitude to emerge at specific
contrast levels, and show some stability across consecu-
tive contrast levels, we ran permutation tests with cluster-
based correction on the relevant datasets (for a detailed
description of the procedure, see Maris and Oostenveld,
2007). However, since we were aware that the stringent
cluster-based correction might favor the null hypothesis,
we additionally report noncluster-based statistics.
Briefly, we obtained the distribution of t statistics under

the null hypothesis of an absence of difference between
conditions by permuting the condition labels of observer
data 10,000 times. For each permutation iteration, we cal-
culated the two-tailed t statistic (for either pairwise or inde-
pendent sample comparisons, depending the comparison)
across all contrast steps, with an a of .05. We then saved
the largest summed t value among clusters of consecu-
tively significant contrast steps. Finally, we computed the
summed t values within significant clusters found in the
nonpermuted data (a=0.05) and calculated their respec-
tive p-values as their percentile relative to the permutation
distribution of maximum cluster t values.
Additional statistical analyses were conducted using

mixed model or repeated measures ANOVAs. The
Greenhouse–Geisser correction was applied whenever
sphericity was violated and p-values were corrected
via Bonferroni whenever applicable.

Results
In a fast periodic presentation paradigm, we measured

the implicit neural signatures of the categorization of natu-
ral human face images (presented at a rate of 1.5Hz) in a
rapid 12-Hz stream of natural images of objects. We took
advantage of periodic brain activity to extract the neural
responses elicited by the image stream (i.e., the general
visual response) and, most importantly, the periodic devi-
ations from this response by the faces appearing at 1.5Hz
(i.e., the face categorization response; see Fig. 4). We
progressively modulated image contrast to estimate the
amount of sensory input necessary for each type of neural
responses to emerge (minimum) and reach its full-fledged
amplitude (optimum) in the present design. Image sequen-
ces were presented either in their natural contrast polarity,
or in a reversed, negative, contrast polarity. By comparing
the minimum and optimum values of contrast for each neu-
ral response to emerge and reach their optimum, in natural
and negative sequences, we quantified the influence of
natural statistics on the dynamics of visual processing
when categorizing faces in fast streams of naturalistic, in-
the-wild, stimuli.

Face categorization response in full contrast viewing
conditions
The face categorization response reflects the brain’s

ability to consistently discriminate face images, despite
their diversity, from the other object categories shown in
the stimulus sequence (Rossion et al., 2015, 2018). Across
experiments, the responses to the full-contrast sequences
of naturally-contrasted images were used as references to
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define the amplitude of the fully-fledged face categoriza-
tion response, i.e., its amplitude at the maximum level of
the tested contrast range. All observers showed periodic re-
sponses at the frequency of face presentation and its har-
monics; all harmonic frequencies were aggregated to
quantify the face-selective EEG response at the individual
level (see Materials and Methods; Fig. 4). In line with previ-
ous studies (Liu-Shuang et al., 2015a,b; Quek et al., 2018b;
Retter et al., 2020; Or et al., 2021; Rekow et al., 2022), the
group level categorization response was most prominent
over the bilateral occipito-temporal scalp electrodes (Fig. 5).
We defined occipito-temporal ROIs for each individual
based on their response to full-contrast sequences.
Although there was a slightly larger amplitude overall in

the negative contrast group for the full natural contrast se-
quences (Fig. 5), a one way ANOVA with Group (natural
group, negative group) as between-subject factor did not
reveal any difference across natural and negative contrast
groups (F(1,28) = 0.522, p=0.476, h2

p = 0.018).
Furthermore, since the participants in the negative con-

trast experiment viewed a full-contrast sequence with
both natural images and their contrast-negated versions,
we were able to examine the impact of contrast negation

on the full-contrast face categorization response. A one-
way repeated-measures ANOVA with Contrast polarity
(natural vs negated) as within-subject factor revealed a
significant main effect of Contrast polarity (F(1,14) = 26.53,
p, 0.0001, h2

p = 0.65) with contrast negation reducing
the amplitude of the face categorization response by
47% (613%) on average (see Fig. 5).
These findings confirm the drastic effect of contrast ne-

gation on face categorization, quantifying it for the first
time here with natural images. It further demonstrates that
at least half of the amplitude of the face categorization re-
sponse is not accounted for merely by the physical pa-
rameters of the stimulus but reflects the successful match
between the incoming input and the stored representation
of what a face generally looks like.

Contrast negation influences both theminimal and
optimal contrast for human face categorization
The profile of the 1.5-Hz face categorization response

in the contrast sweep sequences is plotted separately for
the natural and negative contrast polarity groups (Fig. 6).
In the natural contrast experiment, face categorization

Figure 5. Face categorization response (1.5Hz) in the full-contrast stimulation sequences, in natural and negative contrast groups.
top, Group-level averaged scalp topographies. Bottom, Mean baseline-corrected amplitudes averaged within individually defined
ROIs (see Materials and Methods). Dots represent individual data points.
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responses hovered near zero in the lower end of contrast
continuum and became significant already at 5.1% of
contrast. This response increased with further image
visibility until it no longer differed from full-contrast face
categorization responses at 22.6%. Thus, under eco-
logical contrast polarity, the categorization of faces re-
quired a minimum contrast of 5.1% to emerge and
reached full-contrast levels at only 22.6% of contrast.
In comparison, as illustrated in Figure 6, the face cate-
gorization responses to contrast-negated images re-
quired not only a higher contrast to emerge (10.8%) but
a much higher level of contrast (69%) to reach full-con-
trast response levels. These findings suggest that the
disruption of natural statistics did not only increase the

amount of minimal sensory input that is necessary to
elicit a categorization response but also drastically pro-
tracts the dependence of the categorization response
on contrast, suggesting a less efficient visual process.
While there was some degree of interindividual variability
in the amplitude and steepness of EEG response as a
function of contrast, the response profiles were largely
consistent across participants (Fig. 7).
The observation that the categorization of contrast-ne-

gated face images elicits neural responses with an
amplitude that, at high contrast (69%; 100%) almost
reaches the amplitude of the categorization response
to natural images may seem surprising. Since contrast
negation decreased the face categorization response

Figure 6. Group-level face categorization response in contrast sweep sequences in natural and negative contrast groups. Top,
Scalp topographies at different contrast steps. Bottom, Line plots depict the profile of the bootstrapped mean face categorization
response (averaged within individually defined ROIs; see Materials and Methods) as a function of contrast (plain line for natural con-
trast and dotted line for negative contrast). Open and filled arrows indicate the minimum and optimum levels of contrast, respec-
tively. Error bars represent mean bootstrapped 95% confidence intervals. Dots below the response curves represent significant
amplitude differences between natural and negative contrast group responses at each contrast steps (gray dots for significance at
p, 0.05 with no cluster-based correction; see Materials and Methods). Bar graphs represent the peak of the bootstrapped distribu-
tions (normalized within a range of 0–11) of the contrast minimum (open bars) and optimum (filled bars) in natural and negative con-
trast groups. Face categorization based on negative contrast images elicited weaker response amplitudes and raised minimum and
optimum thresholds relative to natural contrast images.
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by half in full-contrast sequences, one could have
expected the categorization responses to contrast-
negated in sweep sequences to never reach the catego-
rization response amplitude for natural images in full
contrast sequences. Yet, contrast negation reduced the
amplitude of the face categorization response in the con-
trast sweep sequences even at most supra-threshold
contrast levels, showing again the detrimental effect of
contrast negation on categorization in sweep sequences
(Fig. 6; uncorrected p-value range = 0.007–0.047; these
differences just failed to reach the cluster-wise signifi-
cance minimum: cluster p-value range = 0.06–0.3).

Hemispheric lateralization of the face categorization
response
To address the potential hemispheric differences in the

modulation of the face categorization as a function of
contrast, we computed the minimum and optimum con-
trast levels within LOT and ROT ROIs in natural and nega-
tive contrast experiments, separately (Fig. 8).
These analyses were conducted on symmetric ROIs

predefined at the group level (see Materials and Methods)
to ensure that hemispheric differences in face categoriza-
tion responses reflect genuine functional lateralization,
and not individual differences in channel selection. The re-
sulting group-level ROIs contained channels with weaker
amplitudes than the individual ROIs, since the latter were
selected to contain the largest response amplitudes at the
individual level.
First, we tested the hemispheric lateralization of the

face categorization response to natural full-contrast se-
quences (Fig. 8A). To do so, we conducted a mixed
model ANOVA with Hemisphere as a within-subject fac-
tor and Group (natural group, negative group) as a be-
tween-subject factor. We found a significant main effect
of Hemisphere (F(1,28) = 7.14, p= 0.012, h2

p = 0.2), with
larger amplitudes over the right than the left hemisphere.
Overall the face categorization response in natural full-
contrast sequences was of similar magnitude across

groups, corroborating the findings with the full-contrast
responses in individual ROIs (F(1,28) = 0.13, p=0.72,
h2
p=0.005). The interaction between Hemisphere and Group

was not significant (F(1,28) = 0.26, p=0.61, h2
p=0.009).

We additionally tested the effect of Contrast Polarity
as a within-subject factor in the full-contrast data of the
negative contrast group. The 2� 2 repeated measures
ANOVA with Contrast polarity (natural vs negative con-
trast experiment) and Hemisphere (LOT vs ROT) as with-
in-subject factors revealed a significant main effect of
Hemisphere (F(1,14) = 25.28, p, 0.0001, h2

p = 0.64) and of
Contrast Polarity (F(1,14) = 5.8, p= 0.031, h2

p = 0.29). The
amplitude of the face categorization response was again
larger in the right than the left hemisphere. As expected,
full-contrast images presented in their natural contrast
polarity resulted in the strongest face categorization re-
sponse overall (Fig. 8A). The absence of interaction be-
tween Contrast polarity and Hemisphere (F(1,14) = 1.15,
p= 0.3, h2

p = 0.08) suggests a comparable influence of
Contrast polarity across hemispheres during the viewing
of full contrast periodic sequences.
For contrast sweep sequences presented in a natural

polarity, our bootstrapping procedure showed that
face categorization responses emerged at 7.4% con-
trast and saturated at 15.6% in both the left and right
hemispheres (Fig. 8B). The right hemisphere showed
higher amplitudes at most contrast levels (from 10.8%
to 32.8% of contrast: cluster p-value, 0.034). In other
words, besides an overall right-lateralization of the face
categorization responses, visual processing dynamics
when categorizing ecological faces were comparable
across hemispheres, at least with the resolution of the
logarithmic contrast steps used in the current paradigm.
For contrast-negated image sequences, the face

categorization responses emerged later, at a contrast
value of 10.8% and reached optimum later, at 69% in
both the ROT and LOT regions. Hemispheric differen-
ces in amplitude were only significant at the higher
ends of the contrast continuum and at an uncorrected
p value (uncorrected p-value range = 0.019–0.04; no

Figure 7. Line plots of the individual face categorization responses (1.5Hz) in contrast sweep sequences in natural and negative
contrast groups.
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Figure 8. Group-level face categorization responses (1.5Hz) for LOT (in blue) and ROT (in red) ROIs, defined at the group-level (see
Materials and Methods). A, Full contrast sequences. Group-averaged amplitudes in LOT and ROT ROIs in the natural contrast
group (left panel) and negative contrast group (right panel). Dots represent individual response amplitude values. B, Contrast sweep
sequence. Left panel, Natural contrast group. Bootstrapped sweep response profiles and corresponding minimum distributions for
LOT and ROT group-level ROIs. The mean bootstrapped responses in the LOT and ROT are plotted in the top row (error bars repre-
sent mean bootstrapped 95% confidence intervals). Open and filled arrows indicate the minimum and optimum levels of contrast,
respectively. The dots below the response curves represent significant hemispheric differences in amplitude (gray dots for signifi-
cance at p, 0.05; green dots for p, 0.05 significance following cluster-based correction; see Materials and Methods). The rows
below represent the bootstrapped distributions of the contrast minimum (open bars) and optimum points (filled bars) in the LOT
(middle row) and the ROT (bottom row). Note that the histograms have been separately normalized within a range of 0–1. Right
panel, Negative contrast group. Bootstrapped sweep response profiles and corresponding minimum distributions for LOT and ROT
ROIs, displayed using the same conventions as in A.
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clusters reached cluster-based significance minimum,
cluster p-value = 0.28). Thus, the right hemispheric later-
alization of the face categorization response is less reli-
able overall for negative than natural contrast images.
In sum, we found no consistent impact of contrast ne-

gation on the right hemispheric lateralization of the face
categorization response. However, it is important to keep
in mind that these findings stem from group-level ROIs,
which only partially overlap with the maximally-responsive
channels as defined at the individual level. Therefore, we
cannot exclude the possibility that hemispheric differen-
ces would emerge if the maximally responsive channels
would perfectly overlap across individuals. Besides ad-
dressing the lateralization of contrast negation effects on
face categorization, the present results confirm that the
disruption of natural image statistics by means of contrast
negation protracts the contrast dependence of the neural
categorization response. This suggests that the impact of
natural contrast statistics on visual processing dynamics
replicates regardless of the method used to select scalp
electrodes (individual-level vs group-level) and attests the
robustness of the findings.
To summarize, the disruption of image natural statistics

through contrast negation not only decreased the neural
signatures of face categorization at full contrast by almost
half of their amplitude, the novel finding is that it influ-
enced the underlying visual processing dynamics by pro-
tracting both the emergence (i.e., contrast minimum) and
the optimum of the electrophysiological face categoriza-
tion response to higher contrast levels. Contrast negation
drastically expanded the dependence of the electrophysi-
ological categorization response on contrast, and re-
duced its amplitude at most contrast steps.

Contrast negation does not affect the 12-Hz general
visual response to full-contrast sequences
Besides the face categorization response, all observers

showed a neural response at the 12Hz frequency and
harmonics, in response to the 12-Hz image stream (Fig.
4). This neural signal reflects the general response of the
visual system to the stimulus sequence, regardless of the
category membership of the presented images. As shown
in Figure 9, the general visual response to full-contrast im-
ages was centered over medial occipital channels.
The medial occipital location of this response suggests

that it reflects the low-level encoding of image basic prop-
erties such as amplitude spectrum and contours (Ales et
al., 2012; Norcia et al., 2015; Hauk et al., 2021), which are
comparable between positive and negative polarity im-
ages. There was no difference between groups for the
12Hz neural response to the natural contrast polarity im-
ages (F(1,28) = 0.38, p=0.54, h2

p = 0.014). Similarly, in the
negative contrast group, there was no effect of Contrast
polarity on the 12-Hz general visual response (F(1,14) =
0.135, p=0.72, h2

p = 0.01).
To further establish that contrast negation selectively

affected face categorization while leaving generic visual
response unchanged in full contrast viewing conditions,
we ran a 2� 2 repeated measures ANOVA with Contrast
polarity (natural vs negated) and Response (general

visual vs face categorization) as within-subject factors.
The Contrast polarity � Response interaction was signif-
icant (F(1,14) = 30.54, p, 0.001, h2

p = 0.69) confirming
that contrast negation selectively reduced the amplitude
of the 1.5-Hz face categorization response (Pbonf ,
0.001), leaving the general visual response to the 12-Hz
sequence unaffected (Pbonf = 1). In interpreting this inter-
action, it is important to recall the difference in SNR be-
tween the response types (Extended Data Fig. 5-3), which
reflects the generally higher number of events contributing
to 12-Hz responses compared with 1.5-Hz responses.
However, it is unlikely that the interaction reflects the differ-
ence in SNR as the effect of negation was only significantly
observed for the 1.5Hz categorization, i.e., the response
with the lowest SNR. Main effects were of no interest in the
present context; they are only reported here for the sake of
completeness (main effect of Response: F(1,14) = 0.68,
p= 0.423, h2

p = 0.046; main effect of Contrast polarity:
F(1,14) = 21.58, p, 0.001, h2

p = 0.61).
These findings confirm the selective impact of contrast

negation on the face categorization response and thus
validates this image manipulation as a means to disentan-
gle the relative contributions of low-level versus high-level
visual mechanisms to the presently observed contrast
sensitivity profiles.

Contrast negation increases the minimum level of
contrast necessary for the emergence of general
visual responses
Next, we examined how the 12-Hz general visual re-

sponse evolved as a function of contrast. The response
profile of the contrast sweep sequences is plotted sepa-
rately for the Natural and Negative Contrast polarity
groups (Fig. 10). While there was some degree of interin-
dividual variability in the amplitude and steepness of EEG
response as a function of contrast, the response profiles
were largely consistent across participants (Fig. 11).
In natural image sequences, the group-level general

response emerged significantly above zero at 1.7% con-
trast and then increased steadily until reaching the opti-
mum level of full-contrast responses at 47.6% contrast
(Fig. 10). Hence, the general visual processes triggered
by the 12-Hz stimulation sequence exhibited sensitivity
to a wide range of contrast levels.
When contrast polarity was negated, the general visual

response significantly emerged at a higher level of con-
trast (3.5% of contrast; Fig. 10). Despite this disparity in
response onset, the general visual response in the nega-
tive contrast experiment rose to optimum at the same
contrast level (47.6%) for natural and negative images. In
terms of response amplitude, only a single contrast step
differed significantly between experiments (step 3=1.7%
contrast, cluster p-value, 0.046).

Discussion
The present study reports a systematic investigation

of the influence of natural image statistics on the
visual processing dynamics occurring during human
face categorization. Reversing the natural polarity of
image contrast severely disrupts face categorization and
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reduces brain responses to faces compared with when
their natural contrast polarity is preserved. Yet, how nat-
ural contrast statistics contribute to visual processing
during naturalistic categorization has been so far elusive
because of two main reasons. First, the effect of contrast
negation on face categorization has typically been inves-
tigated using restricted sets of segmented images of
faces and objects; these testing conditions are very dif-
ferent from everyday life, where faces and objects have
to be categorized in a cluttered environment and despite
a wide variety of appearances. A second limitation is that
past studies did not investigate the nature of the facilita-
tion triggered by natural statistics. It is unclear whether
knowledge of natural statistics decreases the amount of
sensory input that is necessary to see the face categori-
zation emerge in the observer’s brain (i.e., earlier onset),
if it reduces the sensory input needed to generate a fully-
fledged categorization response (i.e., earlier optimum),
or both, making the categorization less dependent on
contrast overall. We found that natural contrast statistics
cause a drastic reduction in the amount of sensory input
required for face categorization responses to emerge
and also reach optimum, therefore severely reducing the
minimum/optimum distance.

The medial occipital neural response elicited by the 12-
Hz image stream and thought to originate primarily in
low-level visual cortex (Hauk et al., 2021), increased
monotonically with stimulus contrast in both natural
and negated sequences. Contrast negation induced a
moderate shift in the onset of the general visual re-
sponse toward higher contrast values, but did not affect
the level of contrast required to elicit an optimal gener-
al visual response or its overall magnitude. It is unclear
whether this shift in the emergence of the general vis-
ual response is because of a differential activation of
the center-surround receptive fields in the retina or the
lateral geniculate nuclei (Meister and Berry, 1999),
and/or whether it is because of contrast negation hin-
dering general, low-level visual processing in the cortex
(e.g., perception of brightness, Yang and Purves, 2004;
Pickard-Jones et al., 2020; orientation, Girshick et al.,
2011; apparent contrast, Bex and Makous, 2002; Haun
and Peli, 2013). Hence, shading, i.e., the pattern of lu-
minance across a surface, is informative of the struc-
tural properties of many things around us, not just
faces. Combined with the prior assumption that light
comes from above in the natural environment, the
human visual system forges strong priors of how shape

Figure 9. General visual response to the 12-Hz periodic rate in full-contrast stimulation sequences in natural and negative contrast
groups. Top, Group-level averaged scalp topographies. Bottom, Mean amplitudes averaged within individually defined ROIs (see
Materials and Methods). Dots represent individual response amplitude values.
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should be interpolated from shading in everyday life.
For example, contrast negation impedes texture per-
ception (Balas, 2012), and local shape computations
based on texture cues (Fleming et al., 2004). Shading
disruption through negation is therefore expected to
disrupt the general visual processes reflected by the
medial occipital 12-Hz response at least to some ex-
tent, especially when the stimuli are diverse, cluttered
and complex scenes, i.e., challenging viewing condi-
tions that maximally tap into prior experience (Hupé et
al., 1998; Wyatte et al., 2014).

The impact of contrast negation was much more spec-
tacular for human face categorization responses. For
naturally-contrasted images, the face categorization re-
sponse emerged at 5.1% of contrast (RMS contrast of
0.009) and quickly reached its optimal amplitude (22.6%
or 0.041 RMS contrast). Considering the complexity and
wide variety of face images in the sequence, these val-
ues are intriguingly low. It indicates that when the sen-
sory input matches ecological regularities, the human brain
is able to categorize, i.e., to consistently differentiate highly
variable faces from other visual categories, even in seem-
ingly suboptimal, low-contrast, viewing conditions.
In natural contrast viewing conditions, the rise in face

categorization response was fast but gradual as it only
reached its fully-fledged amplitude four steps later, at
22.6% of contrast. This profile indicates the progressive
but rapid direction of categorization by natural statistics.
Past evidence indicates that a fast rise in the face catego-
rization response amplitude results from a proportionately
rapid increase in the number of faces that are correctly
categorized in the rapid image sequences (Retter et al.,
2020). Whether such rise of the face categorization re-
sponse reflects an increase in the sensitivity to face im-
ages, in the tolerance to face image variability, or both
cannot be teased apart in the present study.
Our findings also imply that there is at least a restricted

range where face categorization is contrast-dependent.
This disagrees with previous evidence suggesting that the
high-level cortical regions involved in the categorization of
complex stimuli are (quasi-)invariant to basic properties of
the stimulus such as, e.g., contrast, position, size to ena-
ble efficient categorization (Ito et al., 1995; Andrews and
Ewbank, 2004; Kovács et al., 2008). Instead, our findings
aligns with several studies that showed that high-level
stages of visual processing are at least to some extent
sensitive to contrast (Rolls and Baylis, 1986; Avidan et al.,
2002; Murray and He, 2006; Yue et al., 2013), and with the
more nuanced stance suggested by Näsänen et al. (2006)
that human face identification is influenced by contrast
only at low contrast levels (RMS, 0.1). Here, the RMS
value at which the face categorization response reached
its optimum level was 0.041, thus at a lower level than the
one reported by Näsänen et al. (2006). This difference is
most probably explained by methodological aspects.
Näsänen and colleagues (2006) explicitly instructed their
participants to recognize the identity of faces flashed in
homogeneous sequences of segmented face images. The
basic level of categorization, the high stimulus heteroge-
neity, as well the reliance on implicit neural measures
likely explain the lower cutoff RMS value found here.
Leaving aside these aspects, our finding that the face cat-
egorization response did not reach its optimum as soon
as it emerged (minimum) is in line with the conclusions of
these authors, namely that the underlying mechanisms
are contrast-variant at the lower ends of the contrast con-
tinuum (RMS,0.041), and resistant to contrast at higher
levels of contrast.
In agreement with previous evidence, we found that the

disruption of natural statistics because of contrast nega-
tion reduced by about a factor of 2 the overall amplitude

Figure 10. Group-level common visual response (12Hz) in con-
trast sweep sequences in natural and negative contrast groups.
Scalp topographies at different contrast steps. Line plots depict
the profile of the bootstrapped mean face categorization re-
sponse as a function of contrast (averaged within individually
defined ROIs; plain line for natural contrast and dotted line for
negative contrast). Open and filled arrows indicate the minimum
and optimum levels of contrast, respectively. Error bars repre-
sent mean bootstrapped 95% confidence intervals. Dots below
the response curves represent significant amplitude differences
between natural and negative contrast group responses at each
contrast steps (gray dots for significance at p, 0.05; green
dots for p, 0.05 significance following cluster-based correc-
tion; see Materials and Methods). Bar graphs represent the
peak of the bootstrapped distributions of the contrast minimum
(open bars) and optimum (filled bars) in natural and negative
contrast groups. Note that the histograms have been separately
normalized within a range of 0–11.
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of the face categorization response (Liu-Shuang et al.,
2015a). More interestingly, contrast negation doubled
the minimum level of contrast necessary for the human
brain to categorize a face as a face. While face categori-
zation responses emerged at 5.1% of contrast (RMS of
0.009) in natural contrast settings, a minimum of 10.8%
(RMS of 0.019) of contrast was required in negated
streams. Furthermore, contrast negation expanded vis-
ual processing, shifting the optimum of the categoriza-
tion response to 69% (RMS of 0.124), which is three
times the optimal contrast for face categorization in nat-
ural contrast settings (22.6%; RMS of 0.041).
Altogether this indicates that the access to internally

stored knowledge about how faces appear in real-life, i.e.,
their natural statistics, does not merely enable stronger
output responses, but actually empowers a faster and
more efficient visual processing for the purpose of cate-
gorization. When these natural statistical priorities fail to
guide visual processing, much more sensory input (con-
trast) is needed, which weakens and pushes the neural
categorization response to a considerably higher con-
trast. In contrast to its dramatic effect on the dynamics of
the face categorization response, we found no consistent
impact of contrast negation on right hemispheric specializa-
tion in face processing. This null finding must be interpreted
with caution but suggests that the right-hemispheric spe-
cialization of face processing is not triggered by the contrast
ordinal relationships of the human face.
In the fast periodic visual stimulation paradigm used

here, each image appears very briefly and is masked both
by the preceding and succeeding images (similar to rapid
serial visual presentation; Potter and Levy, 1969; Keysers
et al., 2001, 2005; Potter et al., 2014). This implies that
most of the facilitation observed for the categorization of
natural images happened during the feedforward trans-
mission of the visual signals (Lamme and Roelfsema,
2000; Keysers and Perrett, 2002; Bacon-Macé et al.,
2005; Fahrenfort et al., 2007; although for monkey elec-
trophysiological evidence of rapid feedback, see Girard
et al., 2001; Hupé et al., 2001). Several authors have dis-
cussed the possibility of the influence of natural statistics
priors in a purely feedforward architecture, with each

ventral stream stage amplifying the features (and contin-
gencies of those) that are relevant for categorization
(Simoncelli and Olshausen, 2001; Martin et al., 2018; but
see Kar et al., 2019). Clarifying the exact mechanisms of
such amplification is out of the scope of the present
work. Yet, the fact that natural statistics influenced the
dynamic visual processing leading up to categorization
but seemed to only moderately guide the general visual
responses indicate that most of such amplification oc-
curs when signals are read out by the high-level visual
cortex responsible for categorization.
As human observers experience that members of a vis-

ual category share similar shape and function, access to
such natural statistics is likely to facilitate visual process-
ing dynamics for their categorization. Indeed, whether an
input corresponds to stored natural statistics determines
its categorizability. Since the current study was limited to
categorizing human faces, our findings may not apply to
other (visual) categories. However, we speculate that the
facilitation of processing dynamics for other visual cate-
gories is unlikely to be as clear as for faces. Indeed, face
categorization is one of the most critical visual functions
for human social adaptation, and this likely exerted a
strong evolutionary pressure for the development of
fast and efficient categorization mechanisms. This may
explain why the human species has developed an ex-
ceptional experience with and sensitivity to the univer-
sal properties of face stimuli as a strict and ordered
alternation of contrast (Fig. 1; Watt, 1994; Dakin and
Watt, 2009; Gilad et al., 2009). Figure 1 illustrates the
universality of this property and suggests that the cur-
rent results can be generalized to all faces, regardless
of skin tone. Such priors strongly drive the human visual
system as illustrated by face pareidolia (Rekow et al.,
2021). Nonface visual categories do not seem to lend
such strict contrast rules, i.e., their processing is far
less affected by contrast negation (i.e., dogs, Robbins
and McKone, 2007; chairs, Itier et al., 2006), artificial
objects (i.e., “Greebles”; Vuong et al., 2005), or abstract
visual objects (i.e., “blobs”; Nederhouser et al., 2007; Yue et
al., 2013). This implies that the influence of contrast negation
observed here on the electrophysiological markers of face

Figure 11. Line plots of the individual common visual response (12Hz; averaged within individually defined ROIs) profiles in contrast
sweep sequences, in natural and negative contrast groups.
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categorization are mostly driven by the face images.
Nevertheless, nonface categories may share other visual
regularities, stored in the human visual system as their
natural statistics (see Long et al., 2018 for evidence that
mid-level curvature features driving categorization into
(in)animate categories). However, since the current study
did not systematically compare the impact of natural
contrast statistics for the categorization of face and non-
face categories, whether such natural statistics facilitate
visual processing as vigorously as for face stimuli re-
quires further investigation.
How do natural statistics contribute to the visual proc-

essing dynamics leading up to human face categoriza-
tion? Here, we show that natural statistics not only boost
the amplitude of face categorization responses in the
human brain, but also modulate the underlying process-
ing dynamics by halving the minimal amount of sensory
input required to categorize faces. Once this minimum
has been reached, the face categorization response sam-
ples further input, but reaches its optimum rapidly, i.e., at
a three times lower level of contrast than for contrast-neg-
ative faces. These results have important implications for
how internally stored natural statistics facilitate visual
processing for rapid and efficient categorization.
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